Spatial Voting Theory

This course provides a rigorous introduction to spatial voting theory and its application to voting of all kinds: legislative voting, judicial politics, parliamentary procedure, mass elections, and more. Topics include the median voter theorem, properties of the majority preference relationship, multidimensional voting, and a brief introduction to the empirical estimation of ideal points. The emphasis is on theory – i.e. the logic behind spatial voting games and the conclusions that follow – not on the empirics. However, I also have a few weeks on the estimation of ideal points and their empirical applications. Although we will use examples and applications from political science and international affairs, the emphasis of this course is on methodological skills rather than substantive knowledge. No prior knowledge of game theory or spatial voting models is needed. However, I will assume that students have sufficient aptitude for abstract reasoning and enough algebra to move at a fairly quick pace. I also assume that you have a basic knowledge of R, which we will use to estimate ideal points from voting data and make neat graphs. If you don’t have that kind of background, don’t worry. Just continue to pester me for more introductory material.

My goal is to get your theoretical training up to the level of your excellent statistical training. Specifically, the course should enable you to:

• Think logically and rigorously.
• Construct and analyze simple spatial voting games for your own research.
• Gain familiarity with several well-known theorems and papers in spatial voting theory.
• Provide a push-button approach to the empirical estimation of ideal points.

The only way to learn mathematics is through practice. Most of your learning will occur when you are attempting to solve problems on your own. Solving problems can be frustrating, just like real research can be frustrating, and it will often involve more than replicating the examples in class or in the textbooks. But once you have struggled with the solutions yourself, your analytical skills will improve greatly. I highly recommend that you partner with at least one other student in the class and pick one or two problems a week from the text that you and your partner will work through on the weeks that homeworks are not due. You can also work on homeworks together on the weeks homeworks are due, though you must provide separate, individually written answers.

Grading

As graduate students you should worry more about learning than your grade. Nevertheless, your grade consists of seven homework assignments, which will help you practice the analytical
techniques introduced in class, help you use R to estimate ideal points, and encourage you to apply these models to your own research. I will drop your two lowest homework grades, then assign the average of the remaining five grades as your overall grade. You must attempt to work through as much of the homeworks as possible on your own, and then work with other students only when you are stuck or want to check your answers. That will help you learn. Furthermore, write up your own answers neatly, using your own words, derivations, and explanations. You will probably have to re-write your homeworks before they are turned in.

In Class Experiments

To give you some relief, I may offer a few in-class “experiments” that should allow you to rack-up extra credit points depending on how you play. The extra credit points will be assigned to a specific homework and cannot be transferred to another homework. You can opt out of any game you don’t want to play (some may require you to gamble points), but the in-class experiments help you see the problem from a first hand perspective and allow you develop more sophisticated criticisms of the theories. They are also fun. There are no make-ups for in class experiments, so please try to attend regularly.

<table>
<thead>
<tr>
<th>HW</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW 1 (Median Voter Theorem)</td>
<td>Sept 2</td>
</tr>
<tr>
<td>HW 2 (Nash equilibrium)</td>
<td>Sept 9</td>
</tr>
<tr>
<td>HW 3 (subgame perfection)</td>
<td>Sept 23</td>
</tr>
<tr>
<td>HW 4 (estimating ideal points)</td>
<td>Oct 7</td>
</tr>
<tr>
<td>HW 5 (multidimensional voting)</td>
<td>Nov 4</td>
</tr>
<tr>
<td>HW 6 (bargaining theory)</td>
<td>Nov 11</td>
</tr>
<tr>
<td>HW 7 (applying spatial models to your research)</td>
<td>Dec 2</td>
</tr>
</tbody>
</table>

Academic Honesty

All academic work must meet the standards contained in “A Culture of Honesty.” Students are responsible for informing themselves about these standards before performing academic work. The penalties for academic dishonesty are severe and ignorance is not an acceptable defense. Also note that the course syllabus is a general plan for the course and that deviations announced to the class by the instructor may be necessary.

Late Assignments

Homework assignments require a fair amount of analysis time. Please plan ahead to avoid turning them in late. **Late assignments will be lowered one letter grade for every working day they are late.** If an assignment is late, it would be a good idea to upload it on eLC then email me to let me know it has been posted.
Texts and Other Readings

Two textbooks are required for the course:

- **Martin Osborne. 2004. *An Introduction to Game Theory*. Oxford University Press.** – an introduction to all types of game theory written by the master.

One textbook is highly recommended for the course:

Additional chapters and articles will be in the dropbox set up for the course. Those are marked with DB below. I will send you directions on how to sign up for dropbox to your uga email address shortly after the class begins. It’s free. If any of the electronic readings require a password, it will be “dougherty”, all lower case. If you want to study a game theoretic concept in greater detail, you might also try Roger Myerson. 1991. *Game Theory: Analysis of Conflict*. Harvard University Press – on course reserve.

Schedule of Topics and Readings

Aug 19
Introduction

Aug 26
Theory: Unidimensional Voting & the Core
Hinich and Munger, Analytical Politics, Chapter 2, “The Spatial Model of Downs and Black,” DB.
Osborne, Chapter 8 (sections 1, 2, & 6).

Sept 2
Review: Nash Equilibria & Subgame Perfect Equilibria
Recommended: Watson, *Strategy: An Introduction to Game Theory*, Chapters 2, 3, 9, 14, and 15 – highly recommended as an easier start.
Osborne, Chapter 1 (sections 2-3), Chapter 2 (through 2.9.3), Chapter 5.

Sept 9
Application: Nash, Elections, and Comparative Politics
Osborne, Chapter 3 (section 3).
Sept 16

Application: SPE and Committees
* Osborne, Chapter 6 (sections 1-3), Chapter 7 (sections 1-4).

Sept 23

Estimation: Single Dimension (part 1)
* Poole. 2005. *SMPV*, Chapter 2 (pp. 18-30 only) and Chapter 3 (pp. 46-60 only).

Sept 30

Estimation: Single Dimension (part 2)
* Poole. 2005. *SMPV*. chapter 5 (pp. 141-155 only) and Chapter 6 (pp. 162-172 only).

Oct 7

Application: The Supreme Court

Oct 14

Application: The Responsiveness of Politicians to the Public

Oct 21

Theory: Multidimensional Voting & the Core
Oct 28 Application: Stopping Rules in Committees

Nov 4 Theory: Bargaining Theory

Nov 11 Estimation: Multiple Dimensions
*Poole. 2005. *SMPV*, chapter 2 (pp. 30-41 only), chapter 3 (pp. 60-85 only), and chapter 4.

Nov 18 Theory: SPE, the Uncovered Set, and the Banks Set

Nov 25 NO CLASS: THANKSGIVING

Dec 2 Application: Immigration Policy & Selection of Ministers