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Introduction 1

1. Goals
I To introduce the notion of regression analysis as a description of how

the average value of a response variable changes with the value(s) of
one or more explanatory variables.

I To show that this essential idea can be pursued ‘nonparametrically’
without making strong prior assumptions about the structure of the data.

I To introduce or review basic concepts: skewness, sampling variance,
bias, outliers, etc.

c°

Introduction 2

2. Introduction
I Regression analysis traces the distribution of a response (or dependent)

variable (denoted by ) as a function of one or more explanatory (or
independent or predictor ) variables ( 1 ):

( | 1 ) = ( 1 )

� ( | 1 ) represents the probability (or, for continuous , the
probability density) of observing the specific value of the response
variable, conditional upon a set of specific values ( 1 ) of the
explanatory variables.

I Imagine, for example, that is individuals’ income and that the ’s
are a variety of characteristics upon which income might depend, such
as education, gender, age, and so on. In what follows, I restrict
consideration to quantitative ’s, such as years of education and age.

c°

Introduction 3

I Most discussions of regression analysis begin by assuming (see Figure
1, drawn for a single explanatory variable )
� that the conditional distribution of the response variable, ( | 1 ),

is a normal distribution
� that the variance of conditional on the ’s, denoted 2, is every-

where the same regardless of the specific values of 1

� and that the expected value (the mean) of is a linear function of the
’s:

( | 1 ) = + 1 1 + · · · +
� These assumptions, along with independent random sampling, lead to

linear least-squares estimation.

I In contrast, I will pursue the notion of regression with as few precon-
ceived assumptions as possible.
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Figure 1. The usual assumptions: linearity, constant variance, and nor-
mality, for a single .
c° 2008 by John Fox Sociology 740

Introduction 5

I Figure 2 (for a single ) illustrates why we should not be too hasty to
make the assumptions of normality, equal variance, and linearity:
� Skewness. If the conditional distribution of is skewed then the

mean will not be a good summary of its center.
� Multiple modes. If the conditional distribution of is multimodal then

it is intrinsically unreasonable to summarize its center with a single
number.

� Heavy tails. If the conditional distribution of is substantially non-
normal — for example, heavy-tailed — then the sample mean will not
be an efficient estimator of the center of the -distribution even when
this distribution is symmetric.

� Unequal spread. If the conditional variance of changes with the
values of the ’s then the efficiency of the usual least-squares esti-
mates may be compromised; moreover, the nature of the dependence
of the variance on the ’s may itself be of interest.

c° 2008 by John Fox Sociology 740
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Figure 2. How the usual regression assumptions can fail.
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Introduction 7

� Nonlinearity. Although we are often in a position to expect that the
values of will increase or decrease with some , there is almost
never good reason to assume a priori that the relationship between
and is linear; this problem is compounded when there are several

’s.

I This is not to say, of course, that linear regression analysis or, more
generally, linear statistical models, are of little practical use. Much of
this course is devoted to the exposition of linear models. It is, however,
prudent to begin with an appreciation of the limitations of linear models,
since their effective use in data analysis frequently depends upon
adapting to these limitations.

c° 2008 by John Fox Sociology 740
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3. Naive Nonparametric Regression
I We have a large random sample of employed Canadians that includes

hourly wages and years of education.
� We could easily display the conditional distribution of wages for each

of the values of education (0 1 2 20) that occur in our data, as in
Figure 3.

� If we are interested in the population average or typical value of wages
conditional on education, | , we could estimate (most of) these
conditional averages very accurately using the sample means |
(see Figure 4).
– Using the conditional means isn’t a good idea here because the

conditional distributions of wages given education are positively
skewed.

� Had we access to the entire population of employed Canadians, we
could calculate | directly.
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Figure 3. The conditional distribution of hourly wages for the 3384 em-
ployed Canadians in the SLID who had 12 years of education. The broken
vertical line shows the conditional mean wages.
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Figure 4. A scatterplot showing the relationship between hourly wages (in
dollars) and education (in years) for a sample of 14,601 employed Cana-
dians.
c°

Introduction 11

I Imagine now that , along with , is a continuous variable.
� For example, is the reported weight in kilograms for each of a

sample of individuals, and is their measured weight, again in
kilograms.

� We want to use reported weight to predict actual (i.e., measured)
weight, and so we are interested in the mean value of as a function
of in the population of individuals from among whom the sample
was randomly drawn:

= ( | ) = ( )

� Even if the sample is large, replicated values of will be rare because
is continuous, but for a large sample we can dissect the range of
into many narrow class intervals (or bins) of reported weight, each

bin containing many observations; within each bin, we can display
the conditional distribution of measured weight and estimate the
conditional mean of with great precision.

c°
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� If we have fewer data at our disposal, we have to make do with fewer
bins, each containing relatively few observations.

� This situation is illustrated in Figure 5, using data on reported and
measured weight for each of 101 Canadian women engaged in regular
exercise.

� Another example, using the prestige and income levels of 102
Canadian occupations in 1971, appears in Figure 6.

� The -axes in these figures are carved into bins, each containing
approximately 20 observations (the first and last bins contain the extra
observations). The ‘non-parametric regression line’ displayed on each
plot is calculated by connecting the points defined by the conditional
response-variable means and the explanatory-variable means in
the five bins.
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Figure 5. Naive nonparametric regression of measured on reported
weight. The data are carved into fifths based on their -values and the
average in each fifth is calculated (the solid dots). Note the effect of the
outlier (observation 4).
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Figure 6. Naive nonparametric regression of occupational prestige on av-
erage income.
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I There are two sources of error in this simple procedure of binning and
averaging :
� Sampling error (variance). The conditional sample means will

change if we select a new sample. Sampling error is minimized by
using a small number of relatively wide bins, each with a substantial
number of observations.

� Bias. Let denote the center of the th bin (here, = 1 5). If the
population regression curve ( ) is nonlinear within the interval, then
the average population value of in the interval ( ) is usually different
from the value of the regression curve at the center of the interval,
= ( ), even if the -values are evenly distributed within the

interval. Bias is minimized by making the class-intervals as numerous
and as narrow as possible (see Figure 7).
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approximately 20 observations (the first and last bins contain the extra
observations). The ‘non-parametric regression line’ displayed on each
plot is calculated by connecting the points defined by the conditional
response-variable means and the explanatory-variable means in
the five bins.
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Figure 5. Naive nonparametric regression of measured on reported
weight. The data are carved into fifths based on their -values and the
average in each fifth is calculated (the solid dots). Note the effect of the
outlier (observation 4).
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erage income.
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I There are two sources of error in this simple procedure of binning and
averaging :
� Sampling error (variance). The conditional sample means will

change if we select a new sample. Sampling error is minimized by
using a small number of relatively wide bins, each with a substantial
number of observations.

� Bias. Let denote the center of the th bin (here, = 1 5). If the
population regression curve ( ) is nonlinear within the interval, then
the average population value of in the interval ( ) is usually different
from the value of the regression curve at the center of the interval,
= ( ), even if the -values are evenly distributed within the

interval. Bias is minimized by making the class-intervals as numerous
and as narrow as possible (see Figure 7).
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Figure 7. A narrow bin (b) generally produces less bias in estimating the
regression curve than a wide bin (a).
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I As is typically the case in statistical estimation, reducing bias and
reducing sampling variance work at cross purposes.
� Only if we select a very large sample can we have our cake and eat it

too.
� Naive nonparametric regression is, under very broad conditions, a

consistent estimator of the population regression curve. As the sample
size gets larger (i.e., as ), we can insure that the intervals grow
successively narrower, yet each contains more data.

I When there is more than one explanatory variable naive nonparametric
regression is less practical:
� Suppose, for example, that we have three discrete explanatory

variables, each with ten values. There are, then, 103 = 1 000
combinations of values of the three variables, and within each such
combination there is a conditional distribution of [i.e., ( | 1 2 3)].
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� Even if the ’s are independently distributed — implying equal
expected numbers of observations for each of the 1 000 combinations
— we would require a very large sample indeed to calculate the
conditional means of with sufficient precision.

� The situation is even worse when the ’s are continuous, since
dissecting the range of each into as few as ten class intervals might
introduce substantial bias into the estimation.

� The problem of dividing the data into too many parts grows expo-
nentially more serious as the number of ’s increases. Statisticians
therefore often refer to the intrinsic sparseness of multivariate data as
the ‘curse of dimensionality.’
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4. Local Regression
I There are much better methods of nonparametric regression than

binning and averaging. We often will use a method called local
regression as a data-analytic tool to smooth scatterplots.
� Local regression produces a smoothed fitted value b corresponding to

any -value in the range of the data — usually, at the data-values .
� To find smoothed values, the procedure fits linear (or polynomial)

regressions to the data, one for each observation , emphasizing the
points with -values that are near . This procedure is illustrated in
Figure 8.

I Here are the details (but don’t worry about them):

1. Choose the span: Select a fraction of the data 0 1 (called the
span of the smoother) to include in each fit, corresponding to [ × ]
data values. Often = 1

2 or = 2
3 works well. Larger values of produce

smoother results.
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Figure 8. Local linear regression of occupational prestige on income,
showing the computation of the fit at (80).
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2. Locally weighted regressions: For each = 1 2 , select the
values of closest to , denoted 1 2 . The window half-
width for observation is then the distance to the farthest ; that is,

max =1 | |. In panel (a) of Figure 8 the span is selected to
include the = 40 nearest neighbours of the focal value (80) (which
denotes the 80th ordered -value).

a. Calculate weights: For each of the observations in the window,
compute the weight µ ¶

where (·) is the tricube weight function (see panel b):

( ) =

½
(1 | |3)3 for | | 1

0 for | | 1
The tricube function assigns greatest weight to observations at the
centre of the window and weights of 0 outside of the window.
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b. Local WLS fit: Having computed the weights, fit the local regression
equation

= + 1 +
to minimize

P
=1

2 (i.e., by weighted least squares).
c. Fitted value: Compute the fitted value

b = + 1

One regression equation is fit, and one fitted value is calculated,
for each = 1 [see panel (c)]. Connecting these fitted values
produces the nonparametric regression smooth [panel (d)].
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5. Summary
I Regression analysis examines the relationship between a quantitative

response variable and one or more quantitative explanatory variables,
1 . Regression analysis traces the conditional distribution of

— or some aspect of this distribution, such as its mean — as a function
of the ’s.

I In very large samples, and when the explanatory variables are discrete, it
is possible to estimate a regression by directly examining the conditional
distribution of given the ’s. When the explanatory variables are
continuous, we can proceed similarly by dissecting the ’s into a large
number of narrow bins.

I Local regression allows us to trace how the average changes with
even in small samples.
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1. Goals
I To motivate the inspection and exploration of data as a necessary

preliminary to statistical modeling.

I To review (quickly) familiar graphical displays (histograms, boxplots,
scatterplots).

I To introduce displays that may not be familiar (nonparametric density
estimates, quantile-comparison plots, scatterplots matrices, jittered
scatterplots).

I To introduce the ‘family’ of power transformations.

I To show how power transformations can be used to correct common
problems in data analysis, including skewness, nonlinearity, and non-
constant spread.

I To introduce the logit transformation for proportions (time permitting).

c°
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2. A Preliminary Example
I Careful data analysis begins with inspection of the data, and techniques

for examining and transforming data find direct application to the analysis
of data using linear models.

I The data for the four plots in Figure 1, given in the table below, were
cleverly contrived by Anscombe (1973) so that the least-squares
regression line and all other common regression ‘outputs’ are identical
in the four datasets.

c°
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10 8.04 9.14 7.46 8 6.58
8 6.95 8.14 6.77 8 5.76

13 7.58 8.74 12.74 8 7.71
9 8.81 8.77 7.11 8 8.84

11 8.33 9.26 7.81 8 8.47
14 9.96 8.10 8.84 8 7.04
6 7.24 6.13 6.08 8 5.25
4 4.26 3.10 5.39 19 12.50

12 10.84 9.13 8.15 8 5.56
7 4.82 7.26 6.42 8 7.91
5 5.68 4.74 5.73 8 6.89

I It is clear, however, that each graph tells a different story about the data:
� In (a), the linear regression line is a reasonable descriptive summary

of the tendency of to increase with .
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Figure 1. Anscombe’s “quartet”: Each data set has the same linear least-
-squares regression of on .
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� In Figure (b), the linear regression fails to capture the clearly curvilinear
relationship between the two variables; we would do much better to fit
a quadratic function here, = + + 2.

� In Figure (c), there is a perfect linear relationship between and
for all but one outlying data point. The least-squares line is pulled
strongly towards the outlier, distorting the relationship between the two
variables for the rest of the data. When we encounter an outlier in real
data we should look for an explanation.

� Finally, in (d), the values of are invariant (all are equal to 8), with
the exception of one point (which has an -value of 19); the least-
squares line would be undefined but for this point. We are usually
uncomfortable having the result of a data analysis depend so centrally
on a single influential observation. Only in this fourth dataset is the
problem immediately apparent from inspecting the numbers.
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3. Univariate Displays
3.1 Histograms
I Figure 2 shows two histograms for the distribution of infant morality rate

per 1000 live births for 193 nations of the world (using 1998 data from
the UN).
� The range of infant mortality is dissected into equal-width class

intervals (called ‘bins’); the number of observations falling into each
interval is counted; and these frequency counts are displayed in a bar
graph.

� Both histograms use bins of width 10 they differ in that the bins in (a)
start at 0, while those in (b) start at -5. The two histograms are more
similar than different but they do give slightly different impressions of
the shape of the distribution.
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Figure 2. Two histograms with the same bin width but different origins for
infant mortality in the United Nations data.
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I Histograms are very useful graphs, but they suffer from several problems:
� The visual impression of the data conveyed by a histogram can depend

upon the arbitrary origin of the bin system.
� Because the bin system dissects the range of the variable into class

intervals, the histogram is discontinuous (i.e., rough) even if, as in the
case of income, the variable is continuous.

� The form of the histogram depends upon the arbitrary width of the
bins.

� If we use bins that are narrow enough to capture detail where data are
plentiful — usually near the center of the distribution — then they may
be too narrow to avoid ‘noise’ where data are sparse — usually in the
tails of the distribution.
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3.2 Density Estimation
I Nonparametric density estimation addresses the deficiencies of tradi-

tional histograms by averaging and smoothing.

I The kernel density estimator continuously moves a window of fixed width
across the data, calculating a locally weighted average of the number of
observations falling in the window — a kind of running proportion.
� The smoothed plot is scaled so that it encloses an area of one.
� Selecting the window width for the kernel estimator is primarily a

matter of trial and error — we want a value small enough to reveal
detail but large enough to suppress random noise.

� The adaptive kernel estimator is similar, except that the window width
is adjusted so that the window is narrower where data are plentiful and
wider where data are sparse.

� Details are in the text

I An example is shown in Figure 3.
c°
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Figure 3. Kernel (broken line) and adaptive-kernel (solid line) density esti-
mators for the distribution infant mortality. A “one-dimensional scatterplot”
(or “rug plot”) of the observations is shown at the bottom.
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3.3 Quantile-Comparison Plots
I Quantile-comparison plots are useful for comparing an empirical sample

distribution with a theoretical distribution, such as the normal distribution.
A strength of the display is that it does not require the use of arbitrary
bins or windows.

I Let ( ) represent the theoretical cumulative distribution function (CDF)
to which we wish to compare the data; that is, Pr( ) = ( ).
� A simple (but flawed) procedure is to calculate the empirical cumulative

distribution function (ECDF) for the observed data, which is simply the
proportion of data below each :

b( ) =
#
=1
( )

� As illustrated in Figure 4, however, the ECDF is a ‘stair-step’ function,
while the CDF is typically smooth, making the comparison difficult.
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Figure 4. (a) Typical ECDF; (b) typical CDF.
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I The quantile-comparison plot avoids this problem by never constructing
the ECDF explicitly:

1. Order the data values from smallest to largest, denoted (1) (2) ( ).
The ( ) are called the order statistics of the sample.

2. By convention, the cumulative proportion of the data ‘below’ ( ) is
given by

=
1
2

(or a similar formula).

3. Use the inverse of the CDF (the quantile function) to find the value
corresponding to the cumulative probability ; that is,

= 1

Ã
1
2

!

4. Plot the as horizontal coordinates against the ( ) as vertical
coordinates.
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� If is sampled from the distribution , then ( ) ' .
� If the distributions are identical except for location, then ( ) + .
� If the distributions are identical except for scale, then ( ) .
� If the distributions differ both in location and scale but have the same

shape, then ( ) + .
5. It is often helpful to place a comparison line on the plot to facilitate the

perception of departures from linearity.
6. We expect some departure from linearity because of sampling variation;

it therefore assists interpretation to display the expected degree of
sampling error in the plot. The standard error of the order statistic ( )

is

SE( ( )) =
b
( )

r
(1 )

where ( ) is the probability-density function corresponding to the CDF
( ).
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� The values along the fitted line are given by b( ) = b + b .
� An approximate 95 percent confidence ‘envelope’ around the fitted

line is therefore
b
( ) ± 2 × SE( ( ))

I Figure 5 display normal quantile-comparison plots for several illustrative
distributions:

(1) A sample of = 100 observations from a normal distribution with
mean = 50 and standard deviation = 10.

(2) A sample of = 100 observations from the highly positively skewed
2 distribution with two degrees of freedom.

(3) A sample of = 100 observations from the very-heavy-tailed
distribution with two degrees of freedom.
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Figure 5. Normal quantile comparison plots for samples of size = 100
drawn from three distributions.
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I A normal quantile-comparison plot for the infant-mortality data appears
in Figure 6.
� The positive skew of the distribution is readily apparent.
� The multi-modal character of the data, however, is not easily discerned

in this display:

I Quantile-comparison plots highlight the tails of distributions.
� This is important, because the behavior of the tails is often problematic

for standard estimation methods like least-squares, but it is useful to
supplement quantile-comparison plots with other displays.

I Quantile-comparison plots are usually used not to plot a variable directly
but for derived quantities, such as residuals from a regression model.
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Figure 6. Normal quantile-comparison plot for infant mortality.
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3.4 Boxplots
I Boxplots (due to John Tukey) present summary information on center,

spread, skewness, and outliers.

I An illustrative boxplot, for the infant-mortality data, appears in Figure 7.

I This plot is constructed according to these conventions:

1. A scale is laid off to accommodate the extremes of the data.

2. The central box is drawn between the hinges, which are simply defined
quartiles, and therefore encompasses the middle half of the data. The
line in the central box represents the median.
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Figure 7. Boxplot of infant mortality.
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3. The following rule is used to identify outliers, which are shown individu-
ally in the boxplot:
� The hinge-spread (or inter-quartile range) is the difference between

the hinges:
-spread =

� The ‘fences’ are located 1 5 hinge-spreads beyond the hinges:
F = 1 5× -spread
F = + 1 5 × -spread

Observations beyond fences are identified as outliers. The fences
themselves are not shown in the display. (Points beyond ±3 × -
spread are extreme outliers.)

� The ‘whisker’ growing from each end of the central box extends either
to the extreme observation on its side of the distribution (as at the low
end of the infant-mortality data) or to the most extreme non-outlying
observation, called the ‘adjacent value’ (as at the high end of the
infant-mortality distribution).
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I The boxplot of the infant-mortality distribution clearly reveals the
skewness of the distribution:
� The lower whisker is shorter than the upper whisker; and there are

outlying observations at the upper end of the distribution, but not at
the lower end.

� The median is closer to the lower hinge than to the upper hinge.
� The apparent multi-modality of the infant-mortality data is not repre-

sented in the boxplot.

I Boxplots are most useful as adjuncts to other displays (e.g., in the
margins of a scatterplot) or for comparing several distributions.
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4. Plotting Bivariate Data
I The scatterplot — a direct geometric representation of observations on

two quantitative variables (generically, and )— is the most useful
of all statistical graphs. Scatterplots are familiar, so I will limit this
presentation to a few points (see Figure 8):
� It is convenient to work in a computing environment that permits the

interactive identification of observations in a scatterplot.
� Since relationships between variables in the social sciences are often

weak, scatterplots can be dominated visually by ‘noise.’ It often helps
to enhance the plot with a non-parametric regression of on .

� Scatterplots in which one or both variables are highly skewed are
difficult to examine because the bulk of the data congregate in a small
part of the display. It often helps to ‘correct’ substantial skews prior to
examining the relationship between and .

� Scatterplots in which the variables are discrete are difficult to examine.
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Figure 8. Scatterplot of infant morality by GDP per capita, for the UN data.
The solid line is for a lowess smooth with a span of .5.
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� An extreme instance of this phenomenon is shown in Figure 9, which
plots scores on a ten-item vocabulary test included in NORC’s General
Social Survey against years of education.
– One solution — particularly useful when only is discrete — is to

focus on the conditional distribution of for each value of .
– Boxplots, for example, can be employed to represent the conditional

distributions.
– Another solution is to separate overlapping points by adding a small

random quantity to the discrete scores. For example, I have added
a uniform random variable on the interval [ 0 4 +0 4] to each of
vocabulary and education.
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Figure 9. Vocabulary score by education: (a) original scatterplot; (b) jit-
tered, with the least-squares lines, lowess line (for span = .2), and condi-
tional means.
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I As mentioned, when the explanatory variable is discrete, parallel
boxplots can be used to display the conditional distributions of .
� One common case occurs when the explanatory variable is a

qualitative/categorical variable.
� An example is shown in Figure 10, using data collected by Michael

Ornstein (1976) on interlocking directorates among the 248 largest
Canadian firms.
– The response variable in this graph is the number of interlocking

directorships and executive positions maintained by each firm with
others in the group of 248.

– The explanatory variable is the nation in which the corporation is
controlled, coded as Canada, United Kingdom, United States, and
other foreign.

– It is relatively difficult to discern detail in this display: first, because
the conditional distributions of interlocks are positively skewed; and,
second, because there is an association between level and spread.
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Figure 10. Parallel boxplots of number of interlocks by nation of control, for
Ornstein’s interlocking-directorate data.
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5. Plotting Multivariate Data
I Because paper and computer screens are two-dimensional, graphical

display of multivariate data is intrinsically difficult.
� Multivariate displays for quantitative data often project the higher-

dimensional ‘point cloud’ of the data onto a two-dimensional space.
� The essential trick of effective multidimensional display is to select

projections that reveal important characteristics of the data.
� In certain circumstances, projections can be selected on the basis of

a statistical model fit to the data or on the basis of explicitly stated
criteria.

I A simple approach to multivariate data, which does not require a
statistical model, is to examine bivariate scatterplots for all pairs of
variables.
� Arraying these plots in a ‘scatterplot matrix’ produces a graphical

analog to the correlation matrix.
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� Figure 11 shows an illustrative scatterplot matrix, for data from
Duncan (1961) on the prestige, education, and income levels of 45
U.S. occupations.

� It is important to understand an essential limitation of the scatterplot
matrix as a device for analyzing multivariate data:
– By projecting the multidimensional point cloud onto pairs of axes, the

plot focuses on the marginal relationships between the correspond-
ing pairs of variables.

– The object of data analysis for several variables is typically to
investigate partial relationships, not marginal associations

– can be related marginally to a particular even when there is no
partial relationship between the two variables controlling for other

’s.
– It is also possible for there to be a partial association between and

an but no marginal association.
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Figure 11. Scatterplot matrix for prestige, income, and education in Dun-
can’s occupational prestige data.
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– Furthermore, if the ’s themselves are nonlinearly related, then the
marginal relationship between and a specific can be nonlinear
even when their partial relationship is linear.

� Despite this intrinsic limitation, scatterplot matrices often uncover
interesting features of the data, and this is indeed the case here,
where the display reveals three unusual observations: Ministers,
railroad conductors, and railroad engineers.

I Information about a categorical third variable may be entered on a
bivariate scatterplot by coding the plotting symbols. The most effective
codes use different colors to represent categories, but degrees of fill,
distinguishable shapes, and distinguishable letters can also be effective.
(See, e.g., Figure 12, which uses Davis’s data on weight and reported
weight.)
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Figure 12. Measured by reported weight for 183 men (M) and women (F)
engaged in regular exercise.
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I Another useful multivariate display, directly applicable only to three
variables at a time, is the three-dimensional scatterplot.
� This display is an illusion produced by modern statistical software,

since the graph really represents a projection of a three-dimensional
scatterplot onto a two-dimensional computer screen.

� Nevertheless, motion (e.g., rotation) and the ability to interact with the
display — sometimes combined with the effective use of perspective,
color, depth-cueing, fitted surfaces, and other visual devices — can
produce a vivid impression of directly examining a three-dimensional
space.
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6. Transformations: The Family of Powers
and Roots
I ‘Classical’ statistical models make strong assumptions about the

structure of data, assumptions which often fail to hold in practice.
� One solution is to abandon classical methods.
� Another solution is to transform the data so that they conform more

closely to the assumptions.
� As well, transformations can often assist in the examination of data in

the absence of a statistical model.

I A particularly useful group of transformations is the ‘family’ of powers
and roots:

� If is negative, then the transformation is an inverse power: 1 =
1 , and 2 = 1 2.
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� If is a fraction, then the transformation represents a root: 1 3 =
3

and 1 2 = 1 .

I It is sometimes convenient to define the family of power transformations
in a slightly more complex manner (called the Box-Cox family ):

( ) 1

I Since ( ) is a linear function of , the two transformations have the
same essential effect on the data, but, as is apparent in Figure 13, ( )

reveals the essential unity of the family of powers and roots:
� Dividing by preserves the direction of , which otherwise would be

reversed when is negative:
1 1

1

1 1 1
2 1 2 1 2
3 1 3 1 3
4 1 4 1 4
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Figure 13. The Box-Cox familily of modified power transformations,
( ) = ( 1) , for values of = 1 0 1 2 3. When = 0,
( ) = log .
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� The transformations ( ) are ‘matched’ above = 1 both in level and
slope.

� The power transformation 0 is useless, but the very useful log
transformation is a kind of ‘zeroth’ power:

lim
0

1
= log

where 2 718 is the base of the natural logarithms. Thus, we will
take (0) log( ).
– It is generally more convenient to use logs to the base 10 or base 2,

which are more easily interpreted than logs to the base .
– Changing bases is equivalent to multiplying by a constant.
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I Review of logs:
� logs are exponents: log = (“the log of to the base is ”) means

that =

� Some examples:
log10 100 = 2 102 = 100
log10 0 01 = 2 10 2 = 1

102 = 0 01
log10 10 = 1 101 = 10
log2 8 = 3 23 = 8

log2
¡
1
8

¢
= 3 2 3 = 1

23
= 1

8
log 1 = 0 0 = 1

I Descending the ‘ladder’ of powers and roots from = 1 (i.e., no
transformation) towards ( 1) compresses the large values of and
spreads out the small ones

I Ascending the ladder of powers and roots towards (2) has the opposite
effect.
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1 log2
2 3

1 0 1 1 1
1
2

{ 1 { } 1 } 3 } 7
1 2 1 2 4 8

1
6 { 0.59 { } 1 } 5 } 19

1 3 1.59 3 9 27
1
12 { 0.41 { } 1 } 7 } 37

1 4 2 4 16 64

I Power transformations are sensible only when all of the values of are
positive.
� First of all, some of the transformations, such as log and square root,

are undefined for negative or zero values.
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� Second, the power transformations are not monotone when there are
both positive and negative values in the data:

2

2 4
1 1
0 0
1 1
2 4

� We can add a positive constant (called a ‘start’) to each data value to
make all of the values positive: ( + ) :

( + 3)2

2 1
1 4
0 9
1 16
2 25
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I Power transformations are effective only when the ratio of the biggest
data values to the smallest ones is sufficiently large; if this ratio is
close to 1, then power transformations are nearly linear; in the following
example, 1995 1991 = 1 002 1:

log10
1991 3 2991

1 { } 0.0002
1992 3 2993

1 { } 0.0002
1993 3 2995

1 { } 0.0002
1994 3 2997

1 { } 0.0002
1995 3 2999
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� Using a negative start produces the desired effect:
log10( 1990)

1991 0
1{ }0.301
1992 0 301

1{ }0.176
1993 0 477

1{ }0.125
1994 0 602

1{ }0.097
1995 0 699

I Using reasonable starts, if necessary, an adequate power transformation
can usually be found in the range 2 3.
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7. Transforming Skewness
I Power transformations can make a skewed distribution more symmetric.

But why should we bother?
� Highly skewed distributions are difficult to examine.
� Apparently outlying values in the direction of the skew are brought in

towards the main body of the data.
� Unusual values in the direction opposite to the skew can be hidden

prior to transforming the data.
� Statistical methods such as least-squares regression summarize

distributions using means. The mean of a skewed distribution is not a
good summary of its center.
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I How a power transformation can eliminate a positive skew:
log10

1 0
9 { } 1

10 1
90 { } 1

100 2
900 { } 1

1000 3

� Descending the ladder of powers to log makes the distribution more
symmetric by pulling in the right tail.

� Ascending the ladder of powers (towards 2 and 3) can ‘correct’ a
negative skew.

I For infant mortality in the UN data, the log transformation works well, as
shown in Figure 14.
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X 1 X 1 2 log X X1 2 X

Figure 14. Boxplots for various transformations down the ladder of powers
and roots for infant mortality in the UN datqa.
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I If we have a choice between transformations that perform roughly
equally well, we may prefer one transformation to another because of
interpretability:
� The log transformation has a convenient multiplicative interpretation

(e.g. adding 1 to log2 doubles ; adding 1 to log10 multiples by
10.

� In certain contexts, other transformations may have specific substan-
tive meanings:
– The inverse of time required to travel a fixed distance (e.g., hours for

1 km) is speed (km per hour).
– The inverse of response latency (e.g., in a psychophysical experi-

ment, in milliseconds) is response frequency (responses per 1000
seconds).
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Figure 15. Adaptive-kernel density estimate for log-transformed infant mor-
tality.
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– The square root of a measure of area (say, in m2) is a linear measure
of size (in meters).

– The cube of a linear measure (say in cm) can be interpreted as a
volume (cm3).

I One can also label an axis with the original units, as in Figure 15.
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8. Transforming Nonlinearity
I Power transformations can also be used to make many nonlinear

relationships more nearly linear. Again, why bother?
� Linear relationships — expressible in the form b = + — are

particularly simple.
� When there are several explanatory variables, the alternative of

nonparametric regression may not be feasible or may be difficult to
visualize.

� There is a simple and elegant statistical theory for linear models.
� There are certain technical advantages to having linear relationships

among the explanatory variables in a regression analysis.
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I The following simple example suggests how a power transformation can
serve to straighten a nonlinear relationship; here, = 1

5
2 (with no

residual):

1 0.2
2 0.8
3 1.8
4 3.2
5 5.0

� These ‘data’ are graphed in part (a) of Figure 16.

� We could replace by 0 = , in which case 0 =
q

1
5 [see (b)].

� We could replace by 0 = 2, in which case = 1
5

0 [see (c)].

I A power transformation works here because the relationship between
and is both monotone and simple. In Figure 17:
� the curve in (a) is simple and monotone;
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Figure 16. Transformating a nonlinear relationship (a) to linearity, (b) or
(c).
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Figure 17. (a) A simple monotone relationship. (b) A monotone relation-
ship that is not simple. (c) A simple nonmonotone relationship.
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� in (b) monotone, but not simple;
� in (c) simple but not monotone.

– In (c), we could fit a quadratic model, b = + 1 + 2
2.

I Figure 18 introduces Mosteller and Tukey’s ‘bulging rule’ for selecting a
transformation.
� For example, if the ‘bulge’ points down and to the right, we need to

transform down the ladder of powers or up (or both).
� Recall the relationship between prestige and income for 102 Canadian

occupations, shown again in Figure 19.
– The relationship between prestige and income is clearly monotone

and nonlinear.
– Since the bulge points up and to the left, we can try transforming

prestige up the ladder of powers or income down.
– The cube-root transformation of income works reasonably well.
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Y

log Y

Figure 18. Mosteller and Tukey’s bulging rule for selecting linearizing trans-
formations.
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Figure 19. Transformating the relationship between prestige and income to
(near) linearity: (left) original scatterplot; (right) with income transformed.
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� A more extreme example appears in Figure 20, which shows the
relationship between the infant-mortality rate and GDP per capita in
the UN data.
– The skewness of infant mortality and income makes the scatterplot

difficult to interpret; the nonparametric regression reveals a nonlinear
but monotone relationship.

– The bulging rule suggests that infant mortality or income should be
transformed down the ladder of powers and roots.
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Figure 20. Transforming the relationship between infant mortality and GDP
per capita.
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– Transforming both variables by taking logs makes the relationship
nearly linear; the least-squares fit is:

\log10 Infant mortality = 3 06 0 493× log10GDP
· Because both variables are expressed on log scales to the same

base, the slope of this relationship has a simple interpretation:
A one-percent increase in per-capita income is associated on
average with an approximate half-percent decline in the infant-
mortality rate.
· Economists call this type of number an ‘elasticity.’
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9. Transforming Non-Constant Spread
I When a variable has very different degrees of variation in different

groups, it becomes difficult to examine the data and to compare
differences in level across the groups.
� Recall Ornstein’s Canadian interlocking-directorate data, examining

the relationship between number of interlocks and nation of control.

I Differences in spread are often systematically related to differences in
level.
� Using the median and hinge-spread (inter-quartile range) as indices of

level and spread, respectively, the following table shows that there is
indeed an association, if an imperfect one, between spread and level
for Ornstein’s data:
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Nation of Control Lower Hinge Median Upper Hinge Hinge Spread
Other 3 14.5 23 20
Canada 5 12.0 29 24
United Kingdom 3 8.0 13 10
United States 1 5.0 12 11

I Tukey suggests graphing the log hinge-spread against the log median,
as shown in Figure 21.
� Because some firms maintained zero interlocks, I used a start of 1.
� The slope of the linear ‘trend,’ if any, in the spread-level plot can be

used to suggest a spread-stabilizing power transformation of the data:
– Express the linear fit as

log-spread + log-level
– Then the corresponding spread-stabilizing transformation uses the

power = 1 .
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Figure 21. Spread-level plot for Ornstein’s interlocking-directorate data.
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� For Ornstein’s data, the slope of the least-squares line is = 0 85,
suggesting the power transformation, = 1 0 85 = 0 15 0 (i.e.,
log). See the Figure 22, using logs to the base 2 (and plotting on a
log-scaled axis).

I The problems of unequal spread and skewness commonly occur
together, because they often have a common origin:
� Here, the data represent frequency counts (number of interlocks); the

impossibility of obtaining a negative count tends to produce positive
skewness, together with a tendency for larger levels to be associated
with larger spreads.
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Figure 22. Ornstein’s interlocking-directorate data, log-transforming inter-
locks (with a start of 1).
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10. Transforming Proportions
I Power transformations are often not helpful for proportions, since these

quantities are bounded below by 0 and above by 1.
� If the data values do not approach these two boundaries, then

proportions can be handled much like other sorts of data.
� Percents and many sorts of rates are simply rescaled proportions.
� It is common to encounter ‘disguised’ proportions, such as the number

of questions correct on an exam of fixed length.

I An example, drawn from the Canadian occupational prestige data, is
shown in the stem-and-leaf display (a type of histogram) in Figure 23.
The distribution is for the percentage of women among the incumbents
of each of 102 occupations.
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Unit: 1    Lines/stem: 2
 1|2 <--> 12

depth
32  0|00000000000000111111222233334444
44  0|555566777899 
 8) 1|01111333  
50  1|5557779  
43  2|1344  
39  2|57  
37  3|01334  
32  3|99  
30  4|  
30  4|678  
27  5|224  
24  5|67  
22  6|3  
21  6|789  
18  7|024  
15  7|5667  
11  8|233  
 8  8|  
 8  9|012  
 5  9|56667  

Figure 23. Stem-and-leaf display of percent women in the Canadian occu-
pational prestige data. Notice the “stacking up” near the boundaries of 0
and 100.
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I Several transformations are commonly employed for proportions; the
most important is the logit transformation:

logit( ) = log
1

� The logit transformation is the log of the ‘odds,’ (1 ).
� The ‘trick’ of the logit transformation is to remove the upper and lower

boundaries of the scale, spreading out the tails of the distribution and
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making the resulting quantities symmetric about 0; for example:
1 logit

.05 1 19 2 94

.1 1 9 2 20

.3 3 7 0 85

.5 1 0

.7 7 3 0 85

.9 9 1 2 20

.95 19 1 2 94
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� The logit transformation is graphed in Figure 24. Note that the
transformation is nearly linear in its center, between about = 2 and
= 8.

� The logit transformations cannot be applied to proportions of exactly 0
or 1.
– If we have access to the original counts, we can define adjusted

proportions
0 =

+ 1
2

+ 1
in place of .
· Here, is the frequency count in the focal category (e.g., number

of women) and is the total count (total number of occupational
incumbents, women plus men).
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Proportion, P
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Figure 24. The logit transformation of a proportion.
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– If the original counts are not available, then we can remap the
proportions to an interval that excludes 0 and 1.
· For example, 0 = 005+ 99× remaps proportions to the interval

[.005, .995].
� The distribution of logit( 0

women) for the Canadian occupational prestige
data appears in Figure 25.

� We will encounter logits again when we talk about generalized linear
models for categorical data.
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Unit: 0.1    Lines/stem: 2
 1|2 <--> 1.2
depth
 5  -4|77777 
 8  -3|444 
 16  -3|55667888 
 21  -2|01124 
 31  -2|5567888999 
 39  -1|01112344 
 48  -1|556779999 
 10) -0|0111333444 
 44  -0|668889 
 38   0|01233355889
 27   0|00122577889
 16   1|01111 
 11   1|556 
 8   2|23 
 6   2|5 
 5   3|00014 

Figure 25. Logit-transformed percent women.
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11. Summary
I Statistical graphs are central to effective data analysis, both in the early

stages of an investigation and in statistical modeling.

I There are many useful univariate displays, including the traditional
histogram.
� Nonparametric density estimation may be employed to smooth a

histogram.
� Quantile comparison plots are useful for comparing data with a

theoretical probability distribution.
� Boxplots summarize some of the most important characteristics of a

distribution, including center, spread, skewness, and the presence of
outliers.
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I The bivariate scatterplot is a natural graphical display of the relationship
between two quantitative variables.
� Interpretation of a scatterplot can often be assisted by graphing

a nonparametric regression, which summarizes the relationship
between the two variables.

� Scatterplots of the relationship between discrete variables can be
enhanced by randomly jittering the data.

I Parallel boxplots can be employed to display the relationship between a
quantitative response variable and a discrete explanatory variable.

I Visualizing multivariate data is intrinsically difficult because we cannot
directly examine higher-dimensional scatterplots.
� Effective displays project the higher-dimensional point cloud onto two

or three dimensions.
� These displays include the scatterplot matrix and the dynamic three-

dimensional scatterplot.
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I Transformations can often facilitate the examination and modeling of
data.

I The powers and roots are a particularly useful family of transformations:
.

� We employ the log transformation in place of 0.

I Power transformations preserve the order of the data only when all
values are positive, and are effective only when the ratio of largest to
smallest data values is itself large.
� When these conditions do not hold, we can impose them by adding a

positive or negative start to all of the data values.

I Descending the ladder of powers (e.g., to log ) tends to correct a
positive skew; ascending the ladder of powers (e.g., to 2) tends to
correct a negative skew.

I Simple monotone nonlinearity can often be corrected by a power
transformation of , of , or of both variables.
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� Mosteller and Tukey’s ‘bulging rule’ assists in the selection of a
transformation.

I When there is a positive association between the level of a variable in
different groups and its spread, the spreads can be made more constant
by descending the ladder of powers. A negative association between
level and spread is less common, but can be corrected by ascending the
ladder of powers.

I Power transformations are ineffective for proportions that push the
boundaries of 0 and 1, and for other variables (e.g., percents, rates,
disguised proportions) that are bounded both below and above.
� The logit transformation, log[ (1 )] often works well for

proportions.
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