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1. Goals:
I To introduce the standard statistical models and assumptions for simple

and multiple linear regression.

I To describe properties of the least-squares coefficients as estimators of
the parameters of the regression model.

I To introduce flexible and general procedures for statistical inference
based on least-squares estimators.

I To explore further the interpretation of regression equations.
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2. Simple Regression
2.1 The Simple-Regression Model

Standard statistical inference in simple regression is based upon a
statistical ‘model’:

= + +
I The coefficients and are the population regression parameters to be

estimated.

I The error represents the aggregated, omitted causes of :
� Other explanatory variables that could have been included.
� Measurement error in .
� Whatever component of is inherently random.
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I The key assumptions of the simple-regression model concern the
behavior of the errors — or, equivalently, of the distribution of
conditional on :
� Linearity. ( ) ( | ) = 0. Equivalently, the average value of

is a linear function of :
( ) ( | ) = ( + + )

= + + ( )

= +

� Constant Variance. ( | ) = 2. Equivalently, the variance of
around the regression line is constant:

( | ) = [( )2] = [( )2] = ( 2) = 2

� Normality. (0 2). Equivalently, the conditional distribution of
given is normal: ( + 2). The assumptions of linearity,

constant variance, and normality are illustrated in Figure 1.
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Figure 1. The assumptions of linearity, normality, and constant variance in
the simple-regression model.
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� Independence. The observations are sampled independently: Any
pair of errors and (or, equivalently, of conditional response-
variable values, and ) are independent for 6= . The assumption
of independence needs to be justified by the procedures of data
collection.

� Fixed or independent of the error. Depending upon the design
of a study, the values of the explanatory variable may be fixed in
advance of data collection or they may be sampled along with the
response variable.
– Fixed corresponds almost exclusively to experimental research.
– When, as is more common, is sampled along with , we assume

that the explanatory variable and the error are independent in the
population from which the sample is drawn: That is, the error has the
same distribution [ (0 2)] for every value of in the population.
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2.2 Properties of the Least-Squares Estimator

Under the strong assumptions of the simple-regression model, the sample
least-squares coefficients and have several desirable properties as
estimators of the population regression coefficients and :
I The least-squares intercept and slope are linear estimators, in the sense

that they are linear functions of the observations . For example,

=
X

=1

where
= P

=1( )2

� This result is not important in itself, but it makes the distributions of the
least-squares coefficients simple.
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I Under the assumption of linearity, and are unbiased estimators of
and :

( ) =

( ) =

I Under the assumptions of linearity, constant variance, and indepen-
dence, and have simple sampling variances:

( ) =
2
P

2

P
( )2

( ) =
2

P
( )2

� It is instructive to rewrite the formula for ( ):

( ) =
2

( 1) 2
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I The Gauss-Markov theorem: Of all linear unbiased estimators, the
least-squares estimators are most efficient.
� Under normality, the least-squares estimators are most efficient among

all unbiased estimators, not just among linear estimators. This is a
much more compelling result.

I Under the full suite of assumptions, the least-squares coefficients and
are the maximum-likelihood estimators of and .
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I Under the assumption of normality, the least-squares coefficients are
themselves normally distributed:

2
P

2

P
( )2

¸

2

P
( )2

¸

� Even if the errors are not normally distributed, the distributions of
and are approximately normal, with the approximation improving as
the sample size grows.
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2.3 Confidence Intervals and Hypothesis Tests
I The distributions of and cannot be directly employed for statistical

inference since 2 is never known in practice.

I The variance of the residuals provides an unbiased estimator of 2

2 =

P
2

2
and a basis for estimating the variances of and :

b ( ) =
2
P

2

P
( )2

b ( ) =
2

P
( )2

I The added uncertainty induced by estimating the error variance
is reflected in the use of the -distribution, in place of the normal
distribution, for confidence intervals and hypothesis tests.
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� To construct a 100(1 )% confidence interval for the slope, we take
= ± 2SE( )

where 2 is the critical value of with 2 degrees of freedom and
a probability of 2 to the right, and SE( ) is the square root of b ( ).
(This is just like a confidence interval for a population mean.)

� Similarly, to test the hypothesis 0: = 0 (most commonly, 0: = 0),
calculate the test statistic

0 =
0

SE( )
which is distributed as with 2 degrees of freedom under 0.

� Confidence intervals and hypothesis tests for follow the same
pattern.
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I For Davis’s regression of measured on reported weight, for example:

=

r
418 87

101 2
= 2 0569

SE( ) =
2 0569× 329 731

101× 4539 3 = 1 7444

SE( ) =
2 0569

4539 3
= 0 030529

� Since 025 for 101 2 = 99 degrees of freedom is 1 984, 95-percent
confidence intervals for and are

= 1 778± 1 984× 1 744 = 1 778± 3 460
= 0 9772± 1 984× 0 03053 = 0 9772± 0 06057
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3. Multiple Regression
Most of the results for multiple-regression analysis parallel those for
simple regression.

3.1 The Multiple-Regression Model
I The statistical model for multiple regression is

= + 1 1 + 2 2 + · · · + +

I The assumptions underlying the model concern the errors, , and are
identical to the assumptions in simple regression:
� Linearity. ( ) = 0.
� Constant Variance. ( ) = 2.
� Normality. (0 2).
� Independence. independent for 6= .
� Fixed ’s or ’s independent of
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I Under these assumptions (or particular subsets of them), the least-
squares estimators 1 of 1 are
� linear functions of the data, and hence relatively simple;
� unbiased;
� maximally efficient among unbiased estimators;
� maximum-likelihood estimators;
� normally distributed.

I The slope coefficient in multiple regression has sampling variance

( ) =
1

1 2
×

2

P
=1( )2

where 2 is the multiple correlation from the regression of on all of
the other ’s.
� The second factor is essentially the sampling variance of the slope

in simple regression, although the error variance 2 is smaller than
before.
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� The first factor — called the variance-inflation factor — is large
when the explanatory variable is strongly correlated with other
explanatory variables (the problem of collinearity).

c°



Statistical Inference for Regression 16

3.2 Confidence Intervals and Hypothesis Tests
3.2.1 Individual Slope Coefficients

I Confidence intervals and hypothesis tests for individual coefficients
closely follow the pattern of simple-regression analysis:
� The variance of the residuals provides an unbiased estimator of 2:

2 =

P
2

1

� Using 2 , we can calculate the standard error of :

SE( ) =
1q
1 2

×qP
( )2

� Confidence intervals and tests, based on the -distribution with 1
degrees of freedom, follow straightforwardly.
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I For example, for Duncan’s regression of occupational prestige on
education and income:

2 =
7506 7

45 2 1
= 178 73

12 = 72451

SE( 1) =
1

1 724512
× 178 73

38 971
= 0 098252

SE( 2) =
1

1 724512
× 178 73

26 271
= 0 11967

� With only two explanatory variables, 2
1 =

2
2 =

2
12.
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� To construct 95-percent confidence intervals for the slope coefficients,
we use 025 = 2 018 from the -distribution with 45 2 1 = 42 degrees
of freedom:

Education: 1 = 0 5459± 2 018× 0 09825 = 0 5459± 0 1983
Income: 2 = 0 5987± 2 018× 0 1197 = 0 5987± 0 2415
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3.2.2 All Slopes

I We can also test the global or ‘omnibus’ null hypothesis that all of the
regression slopes are zero:

0: 1 = 2 = · · · = = 0

which is not quite the same as testing the separate hypotheses
(1)
0 : 1 = 0;

(2)
0 : 2 = 0; ;

( )
0 : = 0

� An -test for the omnibus null hypothesis is given by

0 =

RegSS

RSS
1

=
1 ×

2

1 2

� Under the null hypothesis, this test statistic follows an -distribution
with and 1 degrees of freedom.
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� The calculation of the test statistic can be organized in an analysis-of-
variance table:

Source Sum of Squares df Mean Square

Regression RegSS
RegSS RegMS

RMS

Residuals RSS 1
RSS

1
Total TSS 1

� When the null hypothesis is true, RegMS and RMS provide indepen-
dent estimates of the error variance, so the ratio of the two mean
squares should be close to one.
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� When the null hypothesis is false, RegMS estimates the error variance
plus a positive quantity that depends upon the ’s:

( 0)
(RegMS)
(RMS)

=
2 + positive quantity

2

� We consequently reject the omnibus null hypothesis for values of 0

that are sufficiently larger than 1.

I For Duncan’s regression:
Source SS df MS
Regression 36 181 2 18 090 101 2 ¿ 0001
Residuals 7506 7 42 178 73
Total 43 688 44
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3.2.3 A Subset of Slopes

I Consider the hypothesis
0 : 1 = 2 = · · · = = 0

where 1 .
� The ‘full’ regression model, including all of the explanatory variables,

may be written:
= + 1 1 + · · ·+ + +1 +1 + · · · + +

� If the null hypothesis is correct, then the first of the ’s are zero,
yielding the ‘null’ model

= + +1 +1 + · · ·+ +

� The null model omits the first explanatory variables, regressing on
the remaining explanatory variables.
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� An -test of the null hypothesis is based upon a comparison of these
two models:
– RSS1 and RegSS1 are the residual and regression sums of squares

for the full model.
– RSS0 and RegSS0 are the residual and regression sums of squares

for the null model.
– Because the null model is a special case of the full model, RSS0

RSS1. Equivalently, RegSS0 RegSS1.
– If the null hypothesis is wrong and (some of) 1 are nonzero,

then the incremental (or ‘extra’) sum of squares due to fitting the
additional explanatory variables

RSS0 RSS1 = RegSS1 RegSS0
should be large.

c°
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– The -statistic for testing the null hypothesis is

0 =

RegSS1 RegSS0

RSS1
1

=
1 ×

2
1

2
0

1 2
1

– Under the null hypothesis, this test statistic has an -distribution
with and 1 degrees of freedom.

I I will, for the present, illustrate the incremental -test by applying it to
the trivial case in which = 1:
� In Duncan’s dataset, the regression of prestige on income alone

produces RegSS0 = 30 655
� The regression of prestige on both income and education produces

RegSS1 = 36 181 and RSS1 = 7506 7.
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� Consequently, the incremental sum of squares due to education is
RegSS1 RegSS0 = 36 181 30 665 = 5516

� The -statistic for testing 0: Education = 0 is

0 =

5516

1
7506 7

45 2 1

= 30 86

with 1 and 42 degrees of freedom, for which 0001.
� When = 1, the incremental -test is equivalent to the -test, 0 =

2
0:

0 =
0 5459

0 09825
= 5 556

2
0 = 5 5562 = 30 87
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4. Empirical vs. Structural Relations
There are two fundamentally different interpretations of regression
coefficients.
I Borrowing Goldberger’s (1973) terminology, we may interpret a re-

gression descriptively, as an empirical association among variables, or
causally, as a structural relation among variables.

I I will deal first with empirical associations.
� Suppose that in a population, the relationship between and 1 is

well described by a straight line:
= 0 + 0

1 1 +
0

– We do not assume that 1 necessarily causes or, if it does, that
the omitted causes of , incorporated in 0, are independent of 1.

– If we draw a random sample from this population, then the least-
squares sample slope 0

1 is an unbiased estimator of 0
1.
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� Suppose, now, that we introduce a second explanatory variable, 2,
and that, in the same sense as before, the population relationship
between and the two ’s is linear:

= + 1 1 + 2 2 +

– The slope 1 generally will differ from 0
1.

– The sample least-squares coefficients for the multiple regression,
1 and 2, are unbiased estimators of the corresponding population

coefficients, 1 and 2.

c°
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� That the simple-regression slope 0
1 differs from the multiple-regression

slope 1, and that therefore the sample simple-regression coefficient
0
1 is a biased estimator of the population multiple-regression slope 1,

is not problematic, for we do not in this context interpret a regression
coefficient as the effect of an explanatory variable on the response
variable.
– The issue of specification error does not arise, as long as the linear-

regression model adequately describes the empirical relationship
between the variables in the population.

I Imagine now that response-variable scores are constructed according
to the multiple-regression model

= + 1 1 + 2 2 +

where ( ) = 0 and is independent of 1 and 2.
� If we use least-squares to fit this model to sample data, then we will

obtain unbiased estimators of 1 and 2.
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� Instead we mistakenly fit the simple-regression model
= + 1 1 +

0

where, implicitly, the effect of 2 on is absorbed by the error
0 = + 2 2.

� If we assume wrongly that 1 and 0 are uncorrelated then we make
an error of specification.

� The consequence is that our least-squares simple-regression estima-
tor of 1 is biased: Because 1 and 2 are correlated, and because
2 is omitted from the model, part of the effect of 2 is mistakenly

attributed to 1.
� To make the nature of this specification error more precise, let us take

the expectation of both sides of the true (multiple-regression) model:
= + 1 1 + 2 2 + 0

– Subtracting this equation from the model produces
= 1( 1 1) + 2( 2 2) +
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– Multiply this equation through by 1 1

( 1 1)( ) = 1( 1 1)
2

+ 2( 1 1)( 2 2)

+( 1 1)

and take the expectations of both sides:
1 = 1

2
1 + 2 12

– Solving for 1:

1 =
1

2
1

2
12

2
1

– The least-squares coefficient for the simple regression of on 1 is
= 1

2
1 . The simple regression therefore estimates not 1 but

rather 1
2
1

0
1.

– Put another way, 0
1 = 1+ bias, where the bias = 2 12

2
1

– For the bias to be nonzero, two conditions must be met:
(A) 2 must be a relevant explanatory variable — that is, 2 6= 0.
(B) 1 and 2 must be correlated — that is, 12 6= 0.
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– Depending upon the signs of 2 and 12, the bias in the simple-
regression estimator may be either positive or negative.

� Final subtlety: The proper interpretation of the ‘bias’ in the simple-
regression estimator depends upon the nature of the causal relation-
ship between 1 and 2 (see Figure 2) :
– In part (a) of the following figure, 2 intervenes causally between 1

and .
· Here, the ‘bias’ term 2 12

2
1 is simply the indirect effect of 1 on

transmitted through 2, since 12
2
1 is the population slope for

the regression of 2 on 1.
– In part (b), 2 is a common prior cause of both 1 and , and the

bias term represents a spurious — that is, noncausal — component
of the empirical association between 1 and .

– In (b), but not in (a), it is critical to control for 2 in examining the
relationship between and 1.
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(a)

X1

X2

Y

(b)

X2

X1

Y

Figure 2. Two ‘causal models’ for an omitted explanatory variable 2:
(a) 2 intervenes between 1 and ; (b) 2 is a common prior cause of
both 1 and .
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5. Summary
I Standard statistical inference for least-squares regression analysis is

based upon the statistical model
= + 1 1 + · · · + +

� The key assumptions of the model include linearity, constant variance,
normality, and independence.

� The -values are either fixed or, if random, are assumed to be
independent of the errors.

I Under these assumptions, or particular subsets of them, the least-
squares coefficients have certain desirable properties as estimators of
the population regression coefficients.
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I The estimated error of the slope coefficient in simple regression is

SE( ) = qP
( )2

� The standard error of the slope coefficient in multiple regression is

SE( ) =
1q
1 2

×qP
( )2

� In both cases, these standard errors can be used in -intervals and
hypothesis tests for the corresponding population slope coefficients.
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I An -test for the omnibus null hypothesis that all of the slopes are zero
can be calculated from the analysis of variance for the regression:

0 =

RegSS

RSS
1

� The omnibus -statistic has and 1 degrees of freedom.

I There is also an -test for the hypothesis that a subset of slope
coefficients is zero, based upon a comparison of the regression sums
of squares for the full regression model (model 1) and for a null model
(model 0) that deletes the explanatory variables in the null hypothesis:

0 =

RegSS1 RegSS0

RSS1
1
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� This incremental -statistic has and 1 degrees of freedom.

I It is important to distinguish between interpreting a regression descrip-
tively as an empirical association among variables and structurally as
specifying causal relations among variables.
� In the latter event, but not in the former, it is sensible to speak of bias

produced by omitting an explanatory variable that (1) is a cause of
, and (2) is correlated with an explanatory variable in the regression

equation.
� Bias in least-squares estimation results from the correlation that is

induced between the included explanatory variable and the error.
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