Lecture Notes

4. Statistical Inference for Regression

Statistical Inference for Regression

1. Goals:

- ► To introduce the standard statistical models and assumptions for simple and multiple linear regression.
- ► To describe properties of the least-squares coefficients as estimators of the parameters of the regression model.
- ► To introduce flexible and general procedures for statistical inference based on least-squares estimators.
- ▶ To explore further the interpretation of regression equations.

©

Statistical Inference for Regression

2. Simple Regression

2.1 The Simple-Regression Model

Standard statistical inference in simple regression is based upon a statistical 'model':

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- ▶ The coefficients α and β are the population regression parameters to be estimated.
- ▶ The *error* ε_i represents the aggregated, omitted causes of Y:
 - Other explanatory variables that could have been included.
 - Measurement error in Y.
 - Whatever component of *Y* is inherently random.

Statistical Inference for Regression

- ▶ The key assumptions of the simple-regression model concern the behavior of the errors or, equivalently, of the distribution of Y conditional on X:
 - Linearity. $E(\varepsilon_i) \equiv E(\varepsilon|x_i) = 0$. Equivalently, the average value of Y is a linear function of X:

$$\mu_i \equiv E(Y_i) \equiv E(Y|x_i) = E(\alpha + \beta x_i + \varepsilon_i)$$

= $\alpha + \beta x_i + E(\varepsilon_i)$
= $\alpha + \beta x_i$

• Constant Variance. $V(\varepsilon|x_i)=\sigma_\varepsilon^2$. Equivalently, the variance of Y around the regression line is constant:

$$V(Y|x_i) = E[(Y_i - \mu_i)^2] = E[(Y_i - \alpha - \beta x_i)^2] = E(\varepsilon_i^2) = \sigma_\varepsilon^2$$

• **Normality.** $\varepsilon_i \sim N(0, \sigma_\varepsilon^2)$. Equivalently, the conditional distribution of Y given x is normal: $Y_i \sim N(\alpha + \beta x_i, \sigma_\varepsilon^2)$. The assumptions of linearity, constant variance, and normality are illustrated in Figure 1.

©

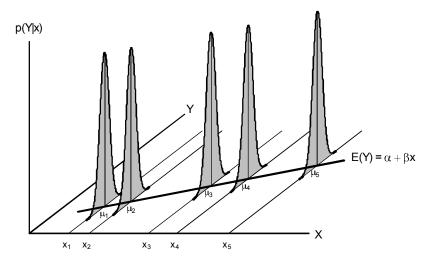


Figure 1. The assumptions of linearity, normality, and constant variance in the simple-regression model.

• Independence. The observations are sampled independently: Any pair of errors ε_i and ε_j (or, equivalently, of conditional response-variable values, Y_i and Y_j) are independent for $i \neq j$. The assumption of independence needs to be justified by the procedures of data collection.

- Fixed X or X independent of the error. Depending upon the design of a study, the values of the explanatory variable may be fixed in advance of data collection or they may be sampled along with the response variable.
- Fixed *X* corresponds almost exclusively to experimental research.
- When, as is more common, X is sampled along with Y, we assume that the explanatory variable and the error are independent in the population from which the sample is drawn: That is, the error has the same distribution $[N(0, \sigma_c^2)]$ for every value of X in the population.

Statistical Inference for Regression

2.2 Properties of the Least-Squares Estimator

Under the strong assumptions of the simple-regression model, the sample least-squares coefficients A and B have several desirable properties as estimators of the population regression coefficients α and β :

▶ The least-squares intercept and slope are *linear estimators*, in the sense that they are linear functions of the observations *Y_i*. For example,

$$B = \sum_{i=1}^{n} m_i Y_i$$

where

$$m_i = \frac{x_i - \overline{x}}{\sum_{j=1}^n (x_j - \overline{x})^2}$$

• This result is not important in itself, but it makes the distributions of the least-squares coefficients simple.

Statistical Inference for Regression

©

▶ Under the assumption of linearity, A and B are unbiased estimators of α and β :

$$E(A) = \alpha$$
$$E(B) = \beta$$

ightharpoonup Under the assumptions of linearity, constant variance, and independence, A and B have simple sampling variances:

$$V(A) = \frac{\sigma_{\varepsilon}^2 \sum x_i^2}{n \sum (x_i - \overline{x})^2}$$

$$V(B) = \frac{\sigma_{\varepsilon}^2}{\sum (x_i - \overline{x})^2}$$

• It is instructive to rewrite the formula for V(B):

$$V(B) = \frac{\sigma_{\varepsilon}^2}{(n-1)S_X^2}$$

©

- ► The Gauss-Markov theorem: Of all linear unbiased estimators, the least-squares estimators are most efficient.
 - Under normality, the least-squares estimators are most efficient among *all* unbiased estimators, not just among linear estimators. This is a much more compelling result.
- ▶ Under the full suite of assumptions, the least-squares coefficients A and B are the maximum-likelihood estimators of α and β .

▶ Under the assumption of normality, the least-squares coefficients are themselves normally distributed:

$$A \sim N \left[\alpha, \frac{\sigma_{\varepsilon}^{2} \sum x_{i}^{2}}{n \sum (x_{i} - \overline{x})^{2}} \right]$$
$$B \sim N \left[\beta, \frac{\sigma_{\varepsilon}^{2}}{\sum (x_{i} - \overline{x})^{2}} \right]$$

ullet Even if the errors are not normally distributed, the distributions of A and B are approximately normal, with the approximation improving as the sample size grows.

Statistical Inference for Regression

(c)

2.3 Confidence Intervals and Hypothesis Tests

- ▶ The distributions of A and B cannot be directly employed for statistical inference since σ_c^2 is never known in practice.
- ▶ The variance of the residuals provides an unbiased estimator of σ_{ε}^2 ,

$$S_E^2 = \frac{\sum E_i^2}{n-2}$$

and a basis for estimating the variances of A and B:

$$\widehat{V}(A) = \frac{S_E^2 \sum x_i^2}{n \sum (x_i - \overline{x})^2}$$

$$\widehat{V}(B) = \frac{S_E^2}{\sum (x_i - \overline{x})^2}$$

▶ The added uncertainty induced by estimating the error variance is reflected in the use of the *t*-distribution, in place of the normal distribution, for confidence intervals and hypothesis tests.

Statistical Inference for Regression

10

©

ullet To construct a 100(1-a)% confidence interval for the slope, we take $eta=B\pm t_{a/2}{\rm SE}(B)$ where $t_{a/2}$ is the critical value of t with n-2 degrees of freedom and

a probability of a/2 to the right, and SE(B) is the square root of $\widehat{V}(B)$. (This is just like a confidence interval for a population mean.)

• Similarly, to test the hypothesis H_0 : $\beta=\beta_0$ (most commonly, H_0 : $\beta=0$), calculate the test statistic

$$t_0 = \frac{B - \beta_0}{\mathsf{SE}(B)}$$

which is distributed as t with n-2 degrees of freedom under H_0 .

 \bullet Confidence intervals and hypothesis tests for α follow the same pattern.

► For Davis's regression of measured on reported weight, for example:

$$S_E = \sqrt{\frac{418.87}{101 - 2}} = 2.0569$$

$$SE(A) = \frac{2.0569 \times \sqrt{329,731}}{\sqrt{101 \times 4539.3}} = 1.7444$$

$$SE(B) = \frac{2.0569}{\sqrt{4539.3}} = 0.030529$$

• Since $t_{.025}$ for 101-2=99 degrees of freedom is 1.984, 95-percent confidence intervals for α and β are

$$\alpha = 1.778 \pm 1.984 \times 1.744 = 1.778 \pm 3.460$$

 $\beta = 0.9772 \pm 1.984 \times 0.03053 = 0.9772 \pm 0.06057$

3. Multiple Regression

Most of the results for multiple-regression analysis parallel those for simple regression.

3.1 The Multiple-Regression Model

▶ The statistical model for multiple regression is

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \varepsilon_i$$

- ▶ The assumptions underlying the model concern the errors, ε_i , and are identical to the assumptions in simple regression:
 - Linearity. $E(\varepsilon_i) = 0$.
 - Constant Variance. $V(\varepsilon_i) = \sigma_\varepsilon^2$.
 - Normality. $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$.
 - Independence. $\varepsilon_i, \varepsilon_j$ independent for $i \neq j$.
 - ullet Fixed X's or X's independent of ε .

Statistical Inference for Regression

(c)

- ▶ Under these assumptions (or particular subsets of them), the least-squares estimators $A, B_1, ..., B_k$ of $\alpha, \beta_1, ..., \beta_k$ are
 - linear functions of the data, and hence relatively simple;
 - unbiased;
 - maximally efficient among unbiased estimators;
 - maximum-likelihood estimators:
 - normally distributed.
- \blacktriangleright The slope coefficient B_i in multiple regression has sampling variance

$$V(B_j) = \frac{1}{1 - R_j^2} \times \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n (X_{ij} - \overline{X}_j)^2}$$

where R_j^2 is the multiple correlation from the regression of X_j on all of the other X's.

• The second factor is essentially the sampling variance of the slope in simple regression, although the error variance σ_ε^2 is smaller than before.

Statistical Inference for Regression

©

• The first factor — called the *variance-inflation factor* — is large when the explanatory variable X_i is strongly correlated with other

explanatory variables (the problem of collinearity).

15

3.2 Confidence Intervals and Hypothesis Tests

3.2.1 Individual Slope Coefficients

- ► Confidence intervals and hypothesis tests for individual coefficients closely follow the pattern of simple-regression analysis:
 - The variance of the residuals provides an unbiased estimator of σ_s^2 :

$$S_E^2 = \frac{\sum E_i^2}{n - k - 1}$$

• Using S_E^2 , we can calculate the standard error of B_i :

$$SE(B_j) = \frac{1}{\sqrt{1 - R_j^2}} \times \frac{S_E}{\sqrt{\sum (X_{ij} - \overline{X}_j)^2}}$$

• Confidence intervals and tests, based on the t-distribution with n-k-1 degrees of freedom, follow straightforwardly.

► For example, for Duncan's regression of occupational prestige on education and income:

$$S_E^2 = \frac{7506.7}{45 - 2 - 1} = 178.73$$

$$r_{12} = .72451$$

$$SE(B_1) = \frac{1}{\sqrt{1 - .72451^2}} \times \frac{\sqrt{178.73}}{\sqrt{38,971}} = 0.098252$$

$$SE(B_2) = \frac{1}{\sqrt{1 - .72451^2}} \times \frac{\sqrt{178.73}}{\sqrt{26, 271}} = 0.11967$$

ullet With only two explanatory variables, $R_1^2=R_2^2=r_{12}^2.$

Statistical Inference for Regression

©

©

ullet To construct 95-percent confidence intervals for the slope coefficients, we use $t_{.025}=2.018$ from the t-distribution with 45-2-1=42 degrees of freedom:

Education: $\beta_1 = 0.5459 \pm 2.018 \times 0.09825 = 0.5459 \pm 0.1983$ Income: $\beta_2 = 0.5987 \pm 2.018 \times 0.1197 = 0.5987 \pm 0.2415$

Statistical Inference for Regression

©

3.2.2 All Slopes

▶ We can also test the global or 'omnibus' null hypothesis that all of the regression slopes are zero:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$

which is not quite the same as testing the separate hypotheses

$$H_0^{(1)}$$
: $\beta_1 = 0$; $H_0^{(2)}$: $\beta_2 = 0$; ...; $H_0^{(k)}$: $\beta_k = 0$

• An F-test for the omnibus null hypothesis is given by

$$F_0 = rac{rac{ ext{RegSS}}{k}}{rac{ ext{RSS}}{n-k-1}} \ = rac{n-k-1}{k} imes rac{R^2}{1-R^2}$$

ullet Under the null hypothesis, this test statistic follows an F-distribution with k and n-k-1 degrees of freedom.

• The calculation of the test statistic can be organized in an *analysis-of-variance table*:

Source	Sum of Squares	df	Mean Square	F
Regression	RegSS	k	$\frac{RegSS}{k}$	RegMS RMS
Residuals	RSS	n - k - 1	$rac{RSS}{n-k-1}$	
Total	TSS	n-1		

When the null hypothesis is true, RegMS and RMS provide independent estimates of the error variance, so the ratio of the two mean squares should be close to one.

• When the null hypothesis is false, RegMS estimates the error variance plus a positive quantity that depends upon the β 's:

$$E(F_0) \approx \frac{E(\text{RegMS})}{E(\text{RMS})} = \frac{\sigma_\varepsilon^2 + \text{ positive quantity}}{\sigma_\varepsilon^2}$$

- ullet We consequently reject the omnibus null hypothesis for values of F_0 that are sufficiently larger than 1.
- ► For Duncan's regression:

Source	SS	df	MS	F	p
Regression	36, 181.	2	18,090.	101.2	≪ .0001
Residuals	7506.7	42	178.73		
Total	43,688.	44			

Statistical Inference for Regression

(c)

3.2.3 A Subset of Slopes

► Consider the hypothesis

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_n = 0$$

where $1 \le q \le k$.

• The 'full' regression model, including all of the explanatory variables, may be written:

$$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_n X_{iq} + \beta_{n+1} X_{i,n+1} + \dots + \beta_k X_{ik} + \varepsilon_i$$

 \bullet If the null hypothesis is correct, then the first q of the β 's are zero, yielding the 'null' model

$$Y_i = \alpha + \beta_{g+1} X_{i,g+1} + \dots + \beta_k X_{ik} + \varepsilon_i$$

ullet The null model omits the first q explanatory variables, regressing Y on the remaining k-q explanatory variables.

Statistical Inference for Regression

22

- 23
- An F-test of the null hypothesis is based upon a comparison of these two models:
- RSS₁ and RegSS₁ are the residual and regression sums of squares for the full model.
- RSS₀ and RegSS₀ are the residual and regression sums of squares for the null model.
- Because the null model is a special case of the full model, $RSS_0 \ge RSS_1$. Equivalently, $RegSS_0 \le RegSS_1$.
- If the null hypothesis is wrong and (some of) $\beta_1,...,\beta_q$ are nonzero, then the *incremental* (or 'extra') sum of squares due to fitting the additional explanatory variables

$$\mathsf{RSS}_0 - \mathsf{RSS}_1 = \mathsf{RegSS}_1 - \mathsf{RegSS}_0$$

should be large.

©

©

– The *F*-statistic for testing the null hypothesis is

$$F_0 = \frac{\frac{\mathsf{RegSS}_1 - \mathsf{RegSS}_0}{q}}{\frac{\mathsf{RSS}_1}{n-k-1}}$$

$$= \frac{n-k-1}{q} \times \frac{R_1^2 - R_0^2}{1-R_1^2}$$

- Under the null hypothesis, this test statistic has an F-distribution with q and n-k-1 degrees of freedom.
- ▶ I will, for the present, illustrate the incremental F-test by applying it to the trivial case in which q = 1:
 - \bullet In Duncan's dataset, the regression of prestige on income alone produces $\mbox{RegSS}_0=30,655$
 - The regression of prestige on both income and education produces $RegSS_1 = 36,181$ and $RSS_1 = 7506.7$.

• Consequently, the incremental sum of squares due to education is $RegSS_1 - RegSS_0 = 36,181 - 30,665 = 5516$

• The F-statistic for testing H_0 : $\beta_{\text{Education}} = 0$ is

$$F_0 = \frac{\frac{5516.}{1}}{\frac{7506.7}{45 - 2 - 1}} = 30.86$$

with 1 and 42 degrees of freedom, for which p < .0001.

• When q=1, the incremental F-test is equivalent to the t-test, $F_0=t_0^2$:

$$t_0 = \frac{0.5459}{0.09825} = 5.556$$

$$t_0^2 = 5.556^2 = 30.87$$

Statistical Inference for Regression

©

©

4. Empirical vs. Structural Relations

There are two fundamentally different interpretations of regression coefficients.

- ▶ Borrowing Goldberger's (1973) terminology, we may interpret a regression descriptively, as an *empirical association* among variables, or causally, as a *structural relation* among variables.
- ▶ I will deal first with empirical associations.
 - ullet Suppose that in a population, the relationship between Y and X_1 is well described by a straight line:

$$Y = \alpha' + \beta_1' X_1 + \varepsilon'$$

- We do not assume that X_1 necessarily causes Y or, if it does, that the omitted causes of Y, incorporated in ε' , are independent of X_1 .
- If we draw a random sample from this population, then the least-squares sample slope B_1' is an unbiased estimator of β_1' .

• Suppose, now, that we introduce a second explanatory variable, X_2 , and that, in the same sense as before, the population relationship between Y and the two X's is linear:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

- The slope β_1 generally will differ from β'_1 .
- The sample least-squares coefficients for the multiple regression, B_1 and B_2 , are unbiased estimators of the corresponding population coefficients, β_1 and β_2 .

- That the simple-regression slope β_1' differs from the multiple-regression slope β_1 , and that therefore the sample simple-regression coefficient B_1' is a biased estimator of the population multiple-regression slope β_1 , is not problematic, for we do not in this context interpret a regression coefficient as the effect of an explanatory variable on the response variable.
 - The issue of specification error does not arise, as long as the linearregression model adequately describes the empirical relationship between the variables in the population.
- ▶ Imagine now that response-variable scores are *constructed* according to the multiple-regression model

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

where $E(\varepsilon) = 0$ and ε is independent of X_1 and X_2 .

• If we use least-squares to fit this model to sample data, then we will obtain unbiased estimators of β_1 and β_2 .

• Instead we mistakenly fit the simple-regression model

$$Y = \alpha + \beta_1 X_1 + \varepsilon'$$

where, implicitly, the effect of X_2 on Y is absorbed by the error $\varepsilon' = \varepsilon + \beta_2 X_2$.

- If we assume wrongly that X_1 and ε' are *uncorrelated* then we make an error of specification.
- The consequence is that our least-squares simple-regression estimator of β_1 is biased: Because X_1 and X_2 are correlated, and because X_2 is omitted from the model, part of the effect of X_2 is mistakenly attributed to X_1 .
- To make the nature of this specification error more precise, let us take the expectation of both sides of the true (multiple-regression) model:

$$\mu_Y = \alpha + \beta_1 \mu_1 + \beta_2 \mu_2 + 0$$

- Subtracting this equation from the model produces

$$Y - \mu_Y = \beta_1(X_1 - \mu_1) + \beta_2(X_2 - \mu_2) + \varepsilon$$

Statistical Inference for Regression

(c)

– Multiply this equation through by $X_1 - \mu_1$

$$(X_1 - \mu_1)(Y - \mu_Y) = \beta_1(X_1 - \mu_1)^2 + \beta_2(X_1 - \mu_1)(X_2 - \mu_2) + (X_1 - \mu_1)\varepsilon$$

and take the expectations of both sides:

$$\sigma_{1Y} = \beta_1 \sigma_1^2 + \beta_2 \sigma_{12}$$

– Solving for β_1 :

$$\beta_1 = \frac{\sigma_{1Y}}{\sigma_1^2} - \beta_2 \frac{\sigma_{12}}{\sigma_1^2}$$

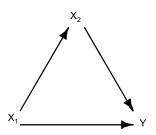
- The least-squares coefficient for the simple regression of Y on X_1 is $B=S_{1Y}/S_1^2$. The simple regression therefore estimates not β_1 but rather $\sigma_{1Y}/\sigma_1^2\equiv\beta_1'$.
- Put another way, $\beta_1' = \beta_1 + bias$, where the $bias = \beta_2 \sigma_{12} / \sigma_1^2$.
- For the bias to be nonzero, two conditions must be met:
- (A) X_2 must be a *relevant* explanatory variable that is, $\beta_2 \neq 0$.
- (B) X_1 and X_2 must be *correlated* that is, $\sigma_{12} \neq 0$.

Statistical Inference for Regression

- Depending upon the signs of β_2 and σ_{12} , the bias in the simple-regression estimator may be either positive or negative.
- Final subtlety: The proper interpretation of the 'bias' in the simple-regression estimator depends upon the nature of the causal relationship between X_1 and X_2 (see Figure 2):
- In part (a) of the following figure, X_2 intervenes causally between X_1 and Y.
 - · Here, the 'bias' term $\beta_2\sigma_{12}/\sigma_1^2$ is simply the *indirect effect* of X_1 on Y transmitted through X_2 , since σ_{12}/σ_1^2 is the population slope for the regression of X_2 on X_1 .
- In part (b), X_2 is a *common prior cause* of both X_1 and Y, and the bias term represents a *spurious* that is, noncausal component of the empirical association between X_1 and Y.
- In (b), but not in (a), it is critical to control for X_2 in examining the relationship between Y and X_1 .

©

(a)



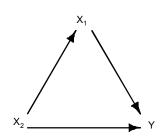


Figure 2. Two 'causal models' for an omitted explanatory variable X_2 : (a) X_2 intervenes between X_1 and Y; (b) X_2 is a common prior cause of both \bar{X}_1 and Y.

5. Summary

▶ Standard statistical inference for least-squares regression analysis is based upon the statistical model

$$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \varepsilon_i$$

- The key assumptions of the model include linearity, constant variance, normality, and independence.
- The X-values are either fixed or, if random, are assumed to be independent of the errors.
- ▶ Under these assumptions, or particular subsets of them, the leastsquares coefficients have certain desirable properties as estimators of the population regression coefficients.

Statistical Inference for Regression

(c)

 \blacktriangleright The estimated error of the slope coefficient B in simple regression is

$$SE(B) = \frac{S_E}{\sqrt{\sum (X_i - \overline{X})^2}}$$

 \bullet The standard error of the slope coefficient B_j in multiple regression is

$$\mathrm{SE}(B_j) = \frac{1}{\sqrt{1 - R_j^2}} \times \frac{S_E}{\sqrt{\sum (X_{ij} - \overline{X}_j)^2}}$$

 In both cases, these standard errors can be used in t-intervals and hypothesis tests for the corresponding population slope coefficients. Statistical Inference for Regression

▶ An *F*-test for the omnibus null hypothesis that all of the slopes are zero can be calculated from the analysis of variance for the regression:

$$F_0 = \frac{\frac{\text{RegSS}}{k}}{\frac{RSS}{n-k-1}}$$

- The omnibus F-statistic has k and n-k-1 degrees of freedom.
- ▶ There is also an F-test for the hypothesis that a subset of q slope coefficients is zero, based upon a comparison of the regression sums of squares for the full regression model (model 1) and for a null model (model 0) that deletes the explanatory variables in the null hypothesis:

$$F_0 = \frac{\frac{\mathsf{RegSS}_1 - \mathsf{RegSS}_0}{q}}{\frac{\mathsf{RSS}_1}{n-k-1}}$$

©

3

- ullet This incremental F-statistic has q and n-k-1 degrees of freedom.
- ▶ It is important to distinguish between interpreting a regression descriptively as an empirical association among variables and structurally as specifying causal relations among variables.
 - In the latter event, but not in the former, it is sensible to speak of bias produced by omitting an explanatory variable that (1) is a cause of Y, and (2) is correlated with an explanatory variable in the regression equation.
 - Bias in least-squares estimation results from the correlation that is induced between the included explanatory variable and the error.