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3. Linear Least-Squares Regression 
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1. Goals:
I To review/introduce the calculation and interpretation of the least-

squares regression coefficients in simple and multiple regression.

I To review/introduce the calculation and interpretation of the regression
standard error and the simple and multiple correlation coefficients.

I To introduce and criticize the use of standardized regression coefficients.
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2. Introduction
I Despite its limitations, linear least squares lies at the very heart of

applied statistics:
� Some data are adequately summarized by linear least-squares

regression.
� The effective application of linear regression is expanded by data

transformations and diagnostics.
� The general linear model — an extension of least-squares linear

regression — is able to accommodate a very broad class of specifica-
tions.

� Linear least-squares provides a computational basis for a variety of
generalizations (such as generalized linear models).

I This lecture describes the mechanics of linear least-squares regression.
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3. Simple Regression
3.1 Least-Squares Fit
I Figure 1 shows Davis’s data on the measured and reported weight in

kilograms of 101 women who were engaged in regular exercise.
� The relationship between measured and reported weight appears to

be linear, so it is reasonable to fit a line to the plot.

I Denoting measured weight by and reported weight by , a line
relating the two variables has the equation = + .
� No line can pass perfectly through all of the data points. A residual, ,

reflects this fact.
� The regression equation for the th of the = 101 observations is

= + +

= b +
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Figure 1. A least-squares line fit to Davis’s data on reported and measured
weight. (The broken line is the line = .)
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� The residual
= b = ( + )

is the signed vertical distance between the point and the line, as
shown in Figure 2.

I A line that fits the data well makes the residuals small.
� Simply requiring that the sum of residuals,

P
=1 , be small is futile,

since large negative residuals can offset large positive ones.
� Indeed, any line through the point ( ) has

P
= 0.

I Two possibilities immediately present themselves:
� Find and to minimize the absolute residuals,

P | |, which leads
to least-absolute-values (LAV) regression.

� Find and to minimize the squared residuals,
P

2, which leads to
least-squares (LS) regression.
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Figure 2. The residual is the signed vertical distance between the point
and the line.
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I In least-squares regression, we seek the values of and that
minimize:

( ) =
X

=1

2 =
X
( )2

� For those with calculus:
– The most direct approach is to take the partial derivatives of the

sum-of-squares function with respect to the coefficients:
( )

=
X
( 1)(2)( )

( )
=
X
( )(2)( )

� Setting these partial derivatives to zero yields simultaneous linear
equations for and , the normal equations for simple regression:

+
X

=
X

X
+

X
2 =

X
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� Solving the normal equations produces the least-squares coefficients:
=

=

P P P
P

2 (
P

)2
=

P
( )( )P

( )2

– The formula for implies that the least-squares line passes through
the point-of-means of the two variables. The least-squares residuals
therefore sum to zero.

– The second normal equation implies that
P

= 0; similarly,P b = 0. These properties imply that the residuals are uncorre-
lated with both the ’s and the b ’s.
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I For Davis’s data on measured weight ( ) and reported weight ( ):
= 101

=
5780

101
= 57 23

=
5731

101
= 56 74

X
( )( ) = 4435

X
( )2 = 4539

=
4435

4539
= 0 9771

= 57 23 0 9771× 56 74 = 1 789
� The least-squares regression equation is

\Measured Weight = 1 79 + 0 977× Reported Weight
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I Interpretation of the least-squares coefficients:
� = 0 977: A one-kilogram increase in reported weight is associated

on average with just under a one-kilogram increase in measured
weight.
– Since the data are not longitudinal, the phrase “a unit increase” here

implies not a literal change over time, but rather a static comparison
between two individuals who differ by one kilogram in their reported
weights.
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� Ordinarily, we may interpret the intercept as the fitted value
associated with = 0, but it is impossible for an individual to have a
reported weight equal to zero.
– The intercept is usually of little direct interest, since the fitted value

above = 0 is rarely important.
– Here, however, if individuals’ reports are unbiased predictions of

their actual weights, then we should have b = — i.e., = 0. The
intercept = 1 79 is close to zero, and the slope = 0 977 is close
to one.
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3.2 Simple Correlation
I It is of interest to determine how closely the line fits the scatter of points.

I The standard deviation of the residuals, , called the standard error of
the regression, provides one index of fit.
� Because of estimation considerations, the variance of the residuals is

defined using 2 degrees of freedom:
2 =

P
2

2
� The standard error is therefore

=

sP
2

2

� Since it is measured in the units of the response variable, the standard
error represents a type of ‘average’ residual.
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� For Davis’s regression of measured on reported weight, the sum of
squared residuals is

P
2 = 418 9, and the standard error

=

r
418 9

101 2
= 2 05 kg.

� I believe that social scientists overemphasize correlation and pay
insufficient attention to the standard error of the regression.

I The correlation coefficient provides a relative measure of fit: To what
degree do our predictions of improve when we base that prediction on
the linear relationship between and ?
� A relative index of fit requires a baseline — how well can be

predicted if is disregarded?
– To disregard the explanatory variable is implicitly to fit the equation

= 0 + 0

– We can find the best-fitting constant 0 by least-squares, minimizing
( 0) =

X
02 =

X
( 0)2
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– The value of 0 that minimizes this sum of squares is the response-
variable mean, .

� The residuals = b from the linear regression of on
will generally be smaller than the residuals 0 = , and it is
necessarily the case thatX

( b )2
X
( )2

– This inequality holds because the ‘null model,’ = 0 + 0 is
a special case of the more general linear-regression ‘model,’
= + + , setting = 0.

� We call X 02 =
X
( )2

the total sum of squares for , abbreviated TSS, whileX
2 =

X
( b )2

is called the residual sum of squares, and is abbreviated RSS.

c°

Linear Least-Squares Regression 15

� The difference between the two, termed the regression sum of
squares,

RegSS TSS RSS
gives the reduction in squared error due to the linear regression.

� The ratio of RegSS to TSS, the proportional reduction in squared error,
defines the square of the correlation coefficient:

2 RegSS
TSS

� To find the correlation coefficient we take the positive square root of
2 when the simple-regression slope is positive, and the negative

square root when is negative.
� If there is a perfect positive linear relationship between and , then

= 1.
� A perfect negative linear relationship corresponds to = 1.
� If there is no linear relationship between and , then RSS = TSS,

RegSS = 0, and = 0.
c°
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� Between these extremes, gives the direction of the linear relationship
between the two variables, and 2 may be interpreted as the proportion
of the total variation of that is ‘captured’ by its linear regression on

.
� Figure 3 depicts several different levels of correlation.

I The decomposition of total variation into ‘explained’ and ‘unexplained’
components, paralleling the decomposition of each observation into a
fitted value and a residual, is typical of linear models.
� The decomposition is called the analysis of variance for the regression:

TSS = RegSS+ RSS
� The regression sum of squares can also be directly calculated as

RegSS =
X
(b )2

I It is also possible to define by analogy with the correlation between
two random variables.
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Figure 3. Scatterplots showing different correlation coefficients . Panel
(b) reminds us that measures linear relationship.
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� First defining the sample covariance between and ,P
( )( )

1
� we may then write

= =

P
( )( )qP
( )2

P
( )2

where and are, respectively, the sample standard deviations of
and .

I Some comparisons between and :
� The correlation coefficient is symmetric in and , while the

least-squares slope is not.
� The slope coefficient is measured in the units of the response

variable per unit of the explanatory variable. For example, if dollars of
income are regressed on years of education, then the units of are
dollars/year. The correlation coefficient , however, is unitless.
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� A change in scale of or produces a compensating change in
, but does not affect . If, for example, income is measured in

thousands of dollars rather than in dollars, the units of the slope
become $1000s/year, and the value of the slope decreases by a factor
of 1000, but remains the same.

I For Davis’s regression of measured on reported weight,
TSS = 4753 8

RSS = 418 87

RegSS = 4334 9

2 =
4334 9

4753 8
= 91188

� Since is positive, = + 91188 = 9549.
� The linear regression of measured on reported weight captures 91

percent of the variation in measured weight.
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� Equivalently,

=
4435 9

101 1
= 44 359

2 =
4539 3

101 1
= 45 393

2 =
4753 8

101 1
= 47 538

=
44 359

45 393× 47 538 = 9549
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4. Multiple Regression
4.1 Two Explanatory Variables
I The linear multiple-regression equation

b = + 1 1 + 2 2

for two explanatory variables, 1 and 2, describes a plane in the
three-dimensional { 1 2 } space, as shown in Figure 4.
� The residual is the signed vertical distance from the point to the plane:

= b = ( + 1 1 + 2 2)

� To make the plane come as close as possible to the points in the
aggregate, we want the values of 1 and 2 that minimize the sum
of squared residuals:

( 1 2) =
X

2 =
X
( 1 1 2 2)

2
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Figure 4. The multiple regression plane.
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� Differentiating the sum-of-squares function with respect to the regres-
sion coefficients, setting the partial derivatives to zero, and rearranging
terms produces the normal equations,

+ 1

P
1 + 2

P
2 =

P
P

1 + 1

P
2
1 + 2

P
1 2 =

P
1P

2 + 1

P
2 1 + 2

P
2
2 =

P
2

� This is a system of three linear equations in three unknowns, so it
usually provides a unique solution for the least-squares regression
coefficients 1 and 2.
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– Dropping the subscript for observations, and using asterisks to
denote variables in mean-deviation form (e.g., ),

= 1 1 2 2

1 =

P
1

P
2
2

P
2

P
1 2P

2
1

P
2
2 (

P
1 2)

2

2 =

P
2

P
2
1

P
1

P
1 2P

2
1

P
2
2 (

P
1 2)

2

– The least-squares coefficients are uniquely defined as long asX
2
1

X
2
2 6= (

X
1 2 )

2

that is, unless 1 and 2 are perfectly correlated (collinear ) or
unless one of the explanatory variables in invariant.

– If 1 and 2 are perfectly correlated, then they are said to be
collinear.
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I An illustration, using Duncan’s occupational prestige data and regressing
the prestige of occupations ( ) on their educational and income levels
( 1 and 2, respectively):

= 45
P

2
1 = 38 971

=
2146

45
= 47 69

P
2
2 = 26 271

1 =
2365

45
= 52 56

P
1 2 = 23 182

2 =
1884

45
= 41 87

P
1 = 35 152P
2 = 28 383

� Substituting these results into the equations for the least-squares
coefficients produces = 6 070 1 = 0 5459 and 2 = 0 5987.

� The fitted least-squares regression equation is
\Prestige = 6 07 + 0 546× Education + 0 599× Income
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I A central difference in interpretation between simple and multiple
regression: The slope coefficients for the explanatory variables in the
multiple regression are partial coefficients, while the slope coefficient in
simple regression gives the marginal relationship between the response
variable and a single explanatory variable.
� That is, each slope in multiple regression represents the ‘effect’ on the

response variable of a one-unit increment in the corresponding ex-
planatory variable holding constant the value of the other explanatory
variable.

� The simple-regression slope effectively ignores the other explanatory
variable.

� This interpretation of the multiple-regression slope is apparent in the
figure showing the multiple-regression plane. Because the regression
plane is flat, its slope in the direction of 1, holding 2 constant, does
not depend upon the specific value at which 2 is fixed.
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� Algebraically, fix 2 to the specific value 2 and see how b changes
as 1 is increased by 1, from some specific value 1 to 1 + 1:

[ + 1( 1 + 1) + 2 2] ( + 1 1 + 2 2) = 1

� A similar result holds for 2.

I For Duncan’s regression:
� A unit increase in education, holding income constant, is associated

on average with an increase of 0 55 units in prestige.
� A unit increase in income, holding education constant, is associated

on average with an increase of 0 60 units in prestige.
� The regression intercept, = 6 1, has the following literal interpreta-

tion: The fitted value of prestige is 6 1 for a hypothetical occupation
with education and income levels both equal to zero. No occupations
have levels of zero for both income and education, however, and the
response variable cannot take on negative values.
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4.2 Several Explanatory Variables
I For the general case of explanatory variables, the multiple-regression

equation is
= + 1 1 + 2 2 + · · · + +

= b +
� It is not possible to visualize the point cloud of the data directly when

2, but it is simple to find the values of and the ’s that minimize
( 1 2 )

=
X

=1

[ ( + 1 1 + 2 2 + · · · + )]2
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� Minimization of the sum-of-squares function produces the normal
equations for general multiple regression:

+ 1

P
1 + 2

P
2 + · · · + P

=
P

P
1 + 1

P
2
1 + 2

P
1 2 + · · · +

P
1 =

P
1P

2 + 1

P
2 1 + 2

P
2
2 + · · · + P

2 =
P

2

·
·
·

·
·
·P

+ 1

P
1 + 2

P
2 + · · · +

P
2 =

P
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� Because the normal equations are linear, and because there are as
many equations as unknown regression coefficients ( + 1), there is
usually a unique solution for the coefficients 1 2 .

� Only when one explanatory variable is a perfect linear function of
others, or when one or more explanatory variables are invariant, will
the normal equations not have a unique solution.

� Dividing the first normal equation through by reveals that the least-
squares surface passes through the point of means ( 1 2 ).

I To illustrate the solution of the normal equations, let us return to the
Canadian occupational prestige data, regressing the prestige of the
occupations on average education, average income, and the percent of
women in each occupation.
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� The various sums, sums of squares, and sums of products that are
required are given in the following table:

Variable Prestige Education Income Percent
Women

Prestige 253,618.
Education 55,326. 12,513.
Income 37,748,108. 8,121,410. 6,534,383,460.
Percent Women 131,909. 32,281. 14,093,097. 187,312.
Sum 4777. 1095. 693,386. 2956.
� Substituting these values into the normal equations and solving for the

regression coefficients produces
= 6 7943

1 = 4 1866

2 = 0 0013136

3 = 0 0089052
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� The fitted regression equation is
\Prestige = 6 794 + 4 187× Education

+ 0 001314× Income
0 008905× Percent Women

� In interpreting the regression coefficients, we need to keep in mind the
units of each variable:

� Prestige scores are arbitrarily scaled, and range from a minimum of
14.8 to a maximum of 87.2 for these 102 occupations; the hinge-
spread of prestige is 24.4 points.

� Education is measured in years, and hence the impact of education on
prestige is considerable — a little more than four points, on average,
for each year of education, holding income and gender composition
constant.
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� Despite the small absolute size of its coefficient, the partial effect of
income is also substantial — about 0 001 points on average for an
additional dollar of income, or one point for each $1,000.

� The impact of gender composition, holding education and income
constant, is very small — an average decline of about 0.01 points
for each one-percent increase in the percentage of women in an
occupation.
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4.3 Multiple Correlation
I As in simple regression, the standard error in multiple regression

measures the ‘average’ size of the residuals.
� As before, we divide by degrees of freedom, here ( +1) = 1

to calculate the variance of the residuals; thus, the standard error is

=

s P
2

1

� Heuristically, we ‘lose’ + 1 degrees of freedom by calculating the
+ 1 regression coefficients, 1 .

� For Duncan’s regression of occupational prestige on the income and
educational levels of occupations, the standard error is

=

r
7506 7

45 2 1
= 13 37
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– The response variable here is the percentage of raters classifying
the occupation as good or excellent in prestige; an average error of
13 is substantial.

I The sums of squares in multiple regression are defined as in simple
regression:

TSS =
X
( )2

RegSS =
X
(b )2

RSS =
X
( b )2 =

X
2

� The fitted values b and residuals now come from the multiple-
regression equation.

� We also have a similar decomposition of variation:
TSS = RegSS+ RSS

� The least-squares residuals are uncorrelated with the fitted values and
with each of the ’s.

c°



Linear Least-Squares Regression 36

I The squared multiple correlation 2 represents the proportion of
variation in the response variable captured by the regression:

2 RegSS
TSS� The multiple correlation coefficient is the positive square root of 2,

and is interpretable as the simple correlation between the fitted and
observed -values.
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I For Duncan’s regression,
TSS = 43 687

RegSS = 36 181

RSS = 7506 7

� The squared multiple correlation is
2 =

36 181

43 688
= 8282

indicating that more than 80 percent of the variation in prestige among
the 45 occupations is accounted for by its linear regression on the
income and educational levels of the occupations.
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4.4 Standardized Regression Coefficients
I Social researchers often wish to compare the coefficients of different

explanatory variables in a regression analysis.
� When the explanatory variables are commensurable, comparison is

straightforward.
� Standardized regression coefficients permit a limited assessment of

the relative effects of incommensurable explanatory variables.

I Imagine that the annual dollar income of wage workers is regressed
on their years on education, years of labor-force experience, and some
other explanatory variables, producing the fitted regression equation

\Income = + 1 × Education + 2 × Experience + · · ·
� Since education and experience are measured in years, the coef-
ficients 1 and 2 are both expressed in dollars/year, and can be
directly compared.
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I More commonly, explanatory variables are measured in different units.
� In the Canadian occupational prestige regression, for example, the

coefficient for education is expressed in points (of prestige) per year;
the coefficient for income is expressed in points per dollar; and the
coefficient of gender composition in points per percent-women.
– The income coefficient (0.001314) is much smaller than the educa-

tion coefficient (4.187) not because income is a much less important
determinant of prestige, but because the unit of income (the dollar)
is small, while the unit of education (the year) is relatively large.

– If we were to re-express income in $1000s, then we would multiply
the income coefficient by 1000.
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I Standardized regression coefficients rescale the ’s according to a
measure of explanatory-variable spread.
� We may, for example, multiply each regression coefficient by the

hinge-spread of the corresponding explanatory variable. For the
Canadian prestige data:

-spread ×
Education: 4 28× 4 187 = 17 92
Income: 4131× 0 001314 = 5 4281
Gender: 48 68× 0 008905 = 0 4335

� For other data, where the variation in education and income may be
different, the relative impact of the two variables may also differ, even
if the regression coefficients are unchanged.

� The following observation should give you pause: If two explanatory
variables are commensurable, and if their hinge-spreads differ, then
performing this calculation is, in effect, to adopt a rubber ruler.
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I It is much more common to standardize regression coefficients using
the standard deviations of the explanatory variables rather than their
hinge-spreads.
� The usual practice standardizes the response variable as well, but this

is inessential:
= + 1 1 + · · · + +

= + 1 1 + · · · +
= 1( 1 1) + · · · + ( ) +

=

µ
1

1

¶
1 1

1

+ · · · +
µ ¶

+

= 1 1 + · · · + +
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– ( ) is the standardized response variable, linearly
transformed to a mean of zero and a standard deviation of one.

– 1 are the explanatory variables, similarly standardized.
– is the transformed residual which, note, does not have a

standard deviation of one.
– ( ) is the standardized partial regression coefficient for

the th explanatory variable.
– The standardized coefficient is interpretable as the average change

in , in standard-deviation units, for a one standard-deviation
increase in , holding constant the other explanatory variables.
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I For the Canadian prestige regression,
Education: 4 187× 2 728 17 20 = 0 6639
Income: 0 001314× 4246 17 20 = 0 3242
Gender: 0 008905× 31 72 17 20 = 0 01642

� Because both income and gender composition have substantially
non-normal distributions, however, the use of standard deviations here
is difficult to justify.

I A common misuse of standardized coefficients is to employ them to
make comparisons of the effects of the same explanatory variable in two
or more samples drawn from populations with different spreads.
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5. Summary
I In simple linear regression, the least-squares coefficients are given by

=

P
( )( )P

( )2

=

I The least-squares coefficients in multiple linear regression are found
by solving the normal equations for the intercept and the slope
coefficients 1 2 .

I The least-squares residuals, , are uncorrelated with the fitted values,
b , and with the explanatory variables, 1 .

I The linear regression decomposes the variation in into ‘explained’ and
‘unexplained’ components: TSS = RegSS + RSS.
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I The standard error of the regression,

=

s P
2

1
gives the ‘average’ size of the regression residuals.

I The squared multiple correlation,
2 =

RegSS
TSS

indicates the proportion of the variation in that is captured by its linear
regression on the ’s.

I By rescaling regression coefficients in relation to a measure of variation
— e.g., the hinge-spread or standard deviation — standardized
regression coefficients permit a limited comparison of the relative
impact of incommensurable explanatory variables.
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