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1. Introduction
I The first three topics of the lecture take up the problems of

� non-normally distributed errors
� non-constant error variance
� nonlinearity.
� The treatment here stresses simple graphical methods for detecting

these problems, along with transformations of the data to correct
problems that are detected.

I Subsequent topics describe tests of non-constant error variance and
nonlinearity for discrete explanatory variables; and (time permitting)
diagnostic methods based upon imbedding the usual linear model
in a more general nonlinear model incorporating transformations as
parameters.
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2. Goals:
I To introduce simple methods for detecting non-normality, non-constant

error variance, and nonlinearity.

I To show how these problems can often be corrected by transformation
and other approaches.

I To introduce the method of maximum likelihood, and to demonstrate its
application to regression diagnostics.

c°

Diagnosing Nonlinearity and Other Ills 3

3. Example: The SLID Data
I To illustrate the methods described in lecture, I will primarily use data

from the 1994 wave of Statistics Canada’s Survey of Labour and Income
Dynamics (SLID).

I The SLID data set that I use includes 3997 employed individuals who
were between 16 and 65 years of age and who resided in Ontario.

I Regressing the composite hourly wage rate on a dummy variable for
sex (code 1 for males), education (in years), and age (also in years)
produces the following results:

\Wages = 8 124 + 3 474×Male + 0 2613× Age
(0 599) (0 2070) (0 0087)

+ 0 9296× Education
(0 0343)

2 = 3074
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4. Non-Normally Distributed Errors
I The assumption of normally distributed errors is almost always arbitrary,

but the central-limit theorem assures that inference based on the least-
squares estimator is approximately valid. Why should we be concerned
about non-normal errors?
� Although the validity of least-squares estimation is robust the efficiency

of least squares is not: The least-squares estimator is maximally
efficient among unbiased estimators when the errors are normal.
For heavy-tailed errors, the efficiency of least-squares estimation
decreases markedly.

� Highly skewed error distributions, aside from their propensity to
generate outliers in the direction of the skew, compromise the
interpretation of the least-squares fit as a conditional typical value of

.
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� A multimodal error distribution suggests the omission of one or more
discrete explanatory variables that divide the data naturally into
groups.

I Quantile-comparison plots are useful for examining the distribution of
the residuals, which are estimates of the errors.
� We compare the sample distribution of the studentized residuals, ,

with the quantiles of the unit-normal distribution, (0 1), or with those
of the -distribution for 2 degrees of freedom.

� Even if the model is correct, the studentized residuals are not an
independent random sample from 2. Correlations among the
residuals depend upon the configuration of the -values, but they are
generally negligible unless the sample size is small.

� At the cost of some computation, it is possible to adjust for the de-
pendencies among the residuals in interpreting a quantile-comparison
plot.
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I The quantile-comparison plot is effective in displaying the tail behavior
of the residuals: Outliers, skewness, heavy tails, or light tails all show up
clearly.

I Other univariate graphical displays, such as histograms and density
estimates, effectively supplement the quantile-comparison plot.

I Figure 1 shows a quantile-comparison plot and a density estimate for
the studentized residuals from the SLID regression.
� The distribution of the studentized residuals is positively skewed and

there may be more than one mode.
� The positive skew in the residual distribution can be corrected by

transforming the response variable down the ladder of powers, in this
case using logs, producing the residual distribution shown in Figure 2.
– The resulting residual distribution has a slight negative skew, but I

preferred the log transformation to the 1/3 power for interpretability.
– Note that the residual distribution is heavy-tailed and possibly

bimodal.
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Figure 1. (a) Quantile-comparison plot with point-wise 95-percent simu-
lated confidence envelope and (b) adaptive kernel-density estimate for the
studentized residuals from the SLID regression.
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Figure 2. (a) Quantile-comparison plot, and (b) adaptive kernel-density
estimate for the studentized residuals from the SLID regression with wages
log-transformed.
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5. Non-Constant Error Variance
I Although the least-squares estimator is unbiased and consistent even

when the error variance is not constant, its efficiency is impaired, and
the usual formulas for coefficient standard errors are inaccurate.
� Non-constant error variance is sometimes termed ‘heteroscedasticity.’

I Because the regression surface is -dimensional, and imbedded in a
space of + 1 dimensions, it is generally impractical to assess the
assumption of constant error variance by direct graphical examination of
the data.

I It is common for error variance to increase as the expectation of grows
larger, or there may be a systematic relationship between error variance
and a particular .
� The former situation can often be detected by plotting residuals against
fitted values;

� the latter by plotting residuals against each .
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� Plotting residuals against (as opposed to b ) is generally unsatisfac-
tory, because the plot will be ‘tilted’
– There is a built-in linear correlation between and , since

= b + .
– The least-squares fit insures that the correlation between b and is

zero, producing a plot that is much easier to examine for evidence of
non-constant spread.

� Because the residuals have unequal variances even when the variance
of the errors is constant, it is preferable to plot studentized residuals
against fitted values.

� It often helps to plot | | or 2 against b .
� It is also possible to adapt Tukey’s spread-level plot (as long as all

of the fitted values are positive), graphing log absolute studentized
residuals against log fitted values.
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I Figure 3 shows a plot of studentized residuals against fitted values and
a spread-level plot for the SLID regression.
� The increasing spread with increasing b suggests moving down the

ladder of powers to stabilize the variance.
� The slope of the line in the spread-level plot is = 0 9994, suggesting

the transformation = 1 0 9994 = 0 0006 0 (i.e., the log
transformation).

� After log-transforming , the diagnostic plots look much better (Figure
4).

I There are alternatives to transformation for dealing with non-constant
error variance.
� Weighted-least-squares (WLS) regression, for example, can be used,

down-weighting observations that have high variance.
� It is also possible to correct the estimated standard errors of the

ordinary least squares (OLS) estimates for non-constant spread.
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Figure 3. (a) Studentized residuals vs. fitted values, and (b) spread-level
plot for the SLID regression. A few observations with b 0 were removed
from (b), and the line is fit by robust regression.
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Figure 4. (a) Studentized residuals versus fitted values, and (b) spread-
-level plot for the SLID regression after log-transforming wages.
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I Non-constant error variance is a serious problem only when it is relatively
extreme — say when the magnitude (i.e., the standard deviation) of the
errors varies by more than a factor of about three — that is, when the
largest error variance is more than about 10 times the smallest (although
there are cases where this simple rule fails to offer sufficient protection).
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6. Nonlinearity
I The assumption that the average error, ( ), is everywhere zero implies

that the specified regression surface accurately reflects the dependency
of on the ’s.
� The term ‘nonlinearity’ is therefore not used in the narrow sense here,

although it includes the possibility that a partial relationship assumed
to be linear is in fact nonlinear.

� If, for example, two explanatory variables specified to have additive
effects instead interact, then the average error is not zero for all
combinations of -values.

� If nonlinearity, in the broad sense, is slight, then the fitted model
can be a useful approximation even though the regression surface
( | 1 ) is not captured precisely.

� In other instances, however, the model can be seriously misleading.
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I The regression surface is generally high dimensional, even after
accounting for regressors (such as dummy variables, interactions, and
polynomial terms) that are functions of a smaller number of fundamental
explanatory variables.
� As in the case of non-constant error variance, it is necessary to focus

on particular patterns of departure from linearity.
� The graphical diagnostics discussed in this section are two-

dimensional projections of the ( + 1)-dimensional point-cloud of
observations { 1 }
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6.1 Component+Residual Plots
I Although it is useful in multiple regression to plot against each ,

these plots can be misleading, because our interest centers on the
partial relationship between and each , controlling for the other

’s, not on the marginal relationship between and an individual ,
ignoring the other ’s.

I Plotting residuals or studentized residuals against each is frequently
helpful for detecting departures from linearity.
� As Figure 5 illustrates, however, residual plots cannot distinguish

between monotone and non-monotone nonlinearity.
– The distinction is important because monotone nonlinearity fre-

quently can be ‘corrected’ by simple transformations.
– Case (a) might be modeled by = + + .
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Figure 5. The residual plots of versus (bottom) are identical, even
though the regression of on in (a) is monotone while that in (b) is
non-monotone.
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– Case (b) cannot be linearized by a power transformation of ,
and might instead be dealt with by the quadratic regression,
= + 1 + 2

2 + .

I Added-variable plots, introduced previously for detecting influential data,
can reveal nonlinearity and suggest whether a relationship is monotone.
� These plots are not always useful for locating a transformation,

however: The added-variable plot adjusts for the other ’s, but it is
the unadjusted that is transformed in respecifying the model.

I Component+residual plots, also called partial-residual plots (as opposed
to partial-regression = added-variable plots) are often an effective
alternative.
� Component+residual plots are not as suitable as added-variable plots

for revealing leverage and influence.
� The partial residual for the th explanatory variable is

( )
= +

c°
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� In words, add back the linear component of the partial relationship
between and to the least-squares residuals, which may include
an unmodeled nonlinear component.

� Then plot ( ) versus .
� By construction, the multiple-regression coefficient is the slope of

the simple linear regression of ( ) on , but nonlinearity may be
apparent in the plot as well.

I The component+residual plots in Figure 6 are for age and education in
the SLID regression, using log-wages as the response.
� Both plots look nonlinear:

– It is not entirely clear whether the partial relationship of log wages to
age is monotone, simply tending to level off at the higher ages, or
whether it is non-monotone, turning back down at the far right.
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Figure 6. Component-plus-residual plots for age and education in the SLID
regression of log wages on these variables and sex. A lowess smooth
(span = 0.4) and least-squares line is shown on each graph.
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– The partial relationship of log wages to education is clearly
monotone, and the departure from linearity is not great—except
at the lowest levels of education, where data are sparse; we should
be able to linearize this partial relationship by moving education up
the ladder of powers, because the bulge points to the right.

– Trial and error experimentation suggests that the quadratic spec-
ification for age works better, producing the following fit to the
data:

\log2 Wages = 0 5725 + 0 3195×Male + 0 1198× Age
(0 0834) (0 0180) (0 0046)

0 001230× Age2 + 0 002605× Education2

(0 000059) (0 000113)
2 = 3892
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� We can take two approaches to constructing component+residual
plots for this respecified model:

1. We can plot partial residuals for each of age and education against
the corresponding explanatory variable. In the case of age, the partial
residuals are computed as

(Age) = 0 1198× Age 0 001230× Age2 +
and for education,

(Education) = 0 002605× Education2 +
See the upper panels of Figure 7; the solid lines are the partial fits (i.e.,
the components) for the two explanatory variables,

b (Age) = 0 1198× Age 0 001230× Age2

b (Education) = 0 002605× Education2

2. We can plot the partial residuals against the partial fits. See the two
lower panels of Figure 7.
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Figure 7. Component-plus-residual plots for age [panels ( ) and ( )] and
education [panels ( ) and ( )] in the respecified model fit to the SLID data.
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I Interpretation of the respecified SLID regression model is complicated
by the transformation of the response (log2wages), the transformation of
education, and the use of a quadratic for age.
� The coefficient of the dummy variable for sex, 0 3195, implies that at
fixed levels of age and education, men on average earn 20 3195 = 1 25
times (i.e., 25 percent more) than women.

� Effect displays for the partial relationship of wages to age and
education are shown in Figure 8.
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Figure 8. Effect displays for age and education in the regression of log
wages on a quadratic in age, the square of education, and sex. The lighter
lines give 95-percent point-wise confidence envelopes around the fits.
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6.2 When Do Partial-Residual Plots Work?
I Imagine that the following model accurately describes the data:

= + ( 1) + 2 2 + · · · + +

� That is, the partial relationship between and 1 is (potentially)
nonlinear, characterized by the function ( 1), while the other
explanatory variables, 2 enter the model linearly.

I Instead of fitting this model to the data, we fit the ‘working model’
= 0 + 0

1 1 +
0
2 2 + · · · + 0 + 0

and construct a component+residual plot for the working model.

I The partial residuals estimate
(1)
= 0

1 1 +
0

� What we would really like to estimate, however, is ( 1) + , which,
apart from random error, will tell us the partial relationship between
and 1.
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I Cook (1993) shows that (1)
= ( 1) + , as desired, under either of

two circumstances:
� The function ( 1) is linear.
� The other explanatory variables 2 are each linearly related to

1. That is,
( ) = 1 + 1 1 for = 2

I If there are nonlinear relationships between other ’s and 1, then the
component+residual plot for 1 may appear nonlinear even if the true
partial regression is linear.

I The second result suggests a practical procedure for improving the
chances that component+residual plots will provide accurate evidence
of nonlinearity:
� If possible, transform the explanatory variables to linearize the

relationships among them.
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I Evidence suggests that weak nonlinearity is not especially problematic,
but strong nonlinear relationships among the explanatory variables can
invalidate the component+residual plot as a useful diagnostic display.
� There are more sophisticated versions of component+residual plots

that are more robust.
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7. Discrete Data
I Discrete explanatory and response variables often lead to plots that

are difficult to interpret, a problem that can be rectified by ‘jittering’ the
plotted points.
� A discrete response variable also violates the assumption that the

errors in a linear model are normally distributed.
� Discrete explanatory variables, in contrast, are perfectly consistent

with the general linear model, which makes no distributional assump-
tions about the ’s, other than independence between the ’s and
the errors.

� Because it partitions the data into groups, a discrete (or combination
of ’s) facilitates straightforward tests of nonlinearity and non-constant
error variance.
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7.1 Testing for Nonlinearity (‘Lack of Fit’)
I Recall the data on vocabulary and education collected in the U.S.

General Social Survey. Years of education in this dataset range between
0 and 20 (see Figure 9). We model the relationship between vocabulary
score and education in two ways:

1. Fit a linear regression of vocabulary on education:
= + + (Model 1)

2. Model education with a set of 20 dummy regressors (treating 0 years as
the baseline category):

= 0 + 1 1 + 2 2 + · · · + 20 20 +
0 (Model 2)
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Figure 9. Mean vocabulary score by years of education. The size of the
points is proportional to the number of observations. The broken line is the
least-squares line.
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I Contrasting the two models produces a test for nonlinearity, because
the first model, specifying a linear relationship between vocabulary
and education, is a special case of the second, which can capture any
pattern of relationship between ( ) and .
� The resulting incremental -test for nonlinearity appears in the

following ANOVA table:
Source SS df F p
Education
(Model Model 2) 26,099 20 374.44 ¿ 0001

Linear
(Model Model 1) 25,340 1 7,270.99 ¿ 0001
Nonlinear
(“lack of fit” ) 759 19 11.46 ¿ 0001

Error
(“pure error” ) 75,337 21,617
Total 101,436 21,637
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� Note that while it is highly statistically significant, the nonlinear
component accounts for very little of the variation in vocabulary
scores.

I The incremental -test for nonlinearity can easily be extended to a
discrete explanatory variable — say 1 — in a multiple-regression
model.
� Here, we need to contrast the general model

= + 1 1 + · · · + 1 1 + 2 2 + · · · + +

with the model specifying a linear effect of 1,
= + 1 1 + 2 2 + · · · + +

where 1 1 are dummy regressors constructed to represent
the categories of 1.
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7.2 Testing for Non-Constant Error Variance
I A discrete (or combination of ’s) partitions the data into groups

(as in analysis of variance).
� Let denote the th of response-variable scores in group .
� If the error variance is constant across groups, then the within-group

sample variances
2 =

P
=1( )2

1
should be similar.
– Tests that examine the 2 directly do not maintain their validity well

when the distribution of the errors is non-normal.
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I The following simple -test (called Levene’s test) is both robust and
powerful:
� Calculate the values

| e |
where e is the median response-variable value in group .

� Then perform a one-way analysis-of-variance of the over the
groups.

� If the error variance is not constant across the groups, then the group
means will tend to differ, producing a large value of the -test
statistic.
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� For the vocabulary data, where education partitions the 21 638
observations into = 21 groups, 0 = 4 26, with 20 and 21 617
degrees of freedom, for which ¿ 0001. There is, therefore, strong
evidence of non-constant spread in vocabulary across the categories
of education, though, as revealed in Figure 10, the within-group
standard deviations are not very different (discounting the small
numbers of individuals with very low levels of education).
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Figure 10. Standard deviation of vocabulary scores by education. The
relative size of the points is proportional to the number of observations.
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8. Maximum-Likelihood Methods
I A statistically sophisticated approach to selecting a transformation of

or an is to imbed the linear model in a more general nonlinear model
that contains a parameter for the transformation.
� If several variables are potentially to be transformed then there may

be several such parameters.

I Suppose that the transformation is indexed by a single parameter ,
and that we can write down the likelihood for the model as a function
of the transformation parameter and the usual regression parameters:
( 1

2).
� Maximizing the likelihood yields the maximum-likelihood estimate of

along with the MLEs of the other parameters.
� Now suppose that = 0 represents no transformation (e.g., 0 = 1

for the power transformation ).
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� A likelihood-ratio test, Wald test, or score test of 0: = 0 assesses
the evidence that a transformation is required.

� A disadvantage of the likelihood-ratio and Wald tests is that they
require finding the MLE, which usually requires iteration.
– In contrast, the slope of the log-likelihood at 0 — on which the score

test depends — generally can be assessed or approximated without
iteration.

– Often, the score test can be formulated as the -statistic for a new
regressor, called a constructed variable, to be added to the linear
model.

– Moreover, a partial-regression plot for the constructed variable then
can reveal whether one or a small group of observations is unduly
influential in determining the transformation.
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8.1 Box-Cox Transformation of
I Box and Cox suggest power transformation of with the object of

normalizing the error distribution.

I The general Box-Cox model is
( )
= + 1 1 + · · · + +

where the errors are independently (0 2), and

( )
=

1
for 6= 0

log for = 0

� Note that all of the must be positive.
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I A simple procedure for finding the MLE is to evaluate the maximized
log ( 1

2| ) for a range of values of , say between 2 and
+2.
� If this range turns out not to contain the maximum of the log-likelihood,

then the range can be expanded.
� To test 0: = 1, calculate the likelihood-ratio statistic

2
0 = 2[log ( = 1) log ( = b)]

which is asymptotically distributed as 2 with one degree of freedom
under 0.

� Equivalently, a 95-percent confidence interval for includes those
values for which

log ( ) log ( = b) 1 92

– The figure 1.92 comes from 1 2× 2
1 05 = 1 2× 1 962.

I Figure 11 shows a plot of the maximized log-likelihood against for the
original SLID regression.
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Figure 11. Box-Cox transformations for the SLID regression of wages on
sex, age, and education. The maximized log likelihood is plotted against
the transformation parameter .
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� The maximum-likelihood estimate of is b = 0 09, and a 95%
confidence interval, marked out by the intersection of the line near the
top of the graph with the profile log likelihood, runs from 0.04 to 0.13.

I Atkinson has proposed an approximate score test for the Box-Cox
model, based on the constructed variable

= log

µ

e

¶
1

¸

where e is the geometric mean of :
e ( 1 × 2 × · · · × )

1

� The augmented regression, including the constructed variable, is then
= + 1 1 + · · · + + +

� The -test of 0: = 0, that is, 0 = b SE(b), assesses the need for a
transformation.
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� An estimate of (though not the MLE) is given by e = 1 b.
� The added-variable plot for the constructed variable shows influence

and leverage on b, and hence on the choice of .
� Atkinson’s constructed-variable plot for the interlocking-directorate

regression is shown in Figure 12.
– The coefficient of the constructed variable in the regression is
b = 1 454, with SE(b) = 0 026, providing overwhelmingly strong
evidence of the need to transform .

– The suggested transformation, e = 1 1 454 = 0 454, is far from
the MLE.
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Figure 12. Constructed-variable plot for the Box-Cox transformation of
wages in the SLID regression. The least-squares line is shown on the
plot.
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8.2 Box-Tidwell Transformation of the ’s
I Now, consider the model

= + 1
1

1 + · · · + +

where the errors are independently distributed as (0 2), and all
of the are positive.

I The parameters of this model — 1 1 and 2 — could
be estimated by general nonlinear least squares, but Box and Tidwell
suggest instead a computationally more efficient procedure that also
yields a constructed-variable diagnostic:

1. Regress on 1 , obtaining 1 .
2. Regress on 1 and the constructed variables

1 log 1 log , obtaining 0 0
1

0 and 1 .
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3. The constructed variable log can be used to assess the need for
a transformation of by testing the null hypothesis 0: = 0, where

is the population coefficient of log in step 2. Added-variable
plots for the constructed variables are useful for assessing leverage and
influence on the decision to transform the ’s.

4. A preliminary estimate of the transformation parameter (not the MLE)
is given by

e = 1 +

I This procedure can be iterated through steps 1, 2, and 4 until the
estimates of the transformation parameters stabilize, yielding the MLEs
b .
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I Consider the SLID regression of log wages on sex, education, and age.
� The dummy regressor for sex is not a candidate for transformation, of

course, but I will consider power transformations of age and education.
– Recall that we were initially undecided about whether to model the

age effect as a quadratic or as a transformation down the ladder of
powers and roots.

� To make power transformations of age more effective, I use a negative
start of 15 (recall that age ranges from 16 to 65).

� The coefficients of (Age 15) × log (Age 15) and Education×
log Education in the step-2 augmented model are, respectively,

Age = 0 04699 with SE( Age) = 0 00231, and Education = 0 05612
with SE( Education) = 0 01254.

� Both score tests are statistically significant, but there is much stronger
evidence of the need to transform age.
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� The first-step estimates of the transformation parameters are

eAge = 1 +
Age

Age
= 1 +

0 04699

0 02619
= 0 79

eEducation = 1 +
Education

Education
= 1 +

0 05612

0 08061
= 1 69

� The fully iterated MLEs of the transformation parameters are bAge =
0 051 and bEducation = 1 89 — very close to the log transformation of
started-age and the square of education.

� Constructed-variable plots for the transformation of age and education
are shown in Figure 13.
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Figure 13. Constructed-variable plots for the Box-Tidwell transformation of
(a) age and (b) education in the SLID regression of log wages on sex, age,
and education.
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8.3 Non-Constant Error Variance Revisited
I Breusch and Pagan develop a score test for heteroscedasticity based

on the specification:
2 ( ) = ( 0 + 1 1 + · · · + )

where 1 are known variables, and where the function (·) is quite
general.
� The same test was independently derived by Cook and Weisberg.

I The score statistic for the hypothesis that the 2 are all the same,
which is equivalent to 0: 1 = · · · = = 0, can be formulated as an
auxiliary-regression problem.
� Let 2 b2, where b2 =P 2 is the MLE of the error variance.

Regress on the ’s:
= 0 + 1 1 + · · · + +
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� Breusch and Pagan show that the score statistic
2
0 =

P
(b )2

2
is asymptotically distributed as 2 with degrees of freedom under the
null hypothesis of constant error variance.

� Here, the b are fitted values from the regression of on the ’s,
and thus 2

0 is half the regression sum of squares from the auxiliary
regression.

I To apply this result, it is necessary to select ’s, the choice of which
depends upon the suspected pattern of non-constant error variance.
� Employing 1 in the auxiliary regression, for example, permits

detection of a tendency of the error variance to increase (or decrease)
with the values of one or more of the explanatory variables in the main
regression.
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� Cook and Weisberg suggest regressing on the fitted values from the
main regression (i.e., = 0 + 1

b + ), producing a one-degree-
of-freedom score test to detect the common tendency of the error
variance to increase with the level of the response variable.
– Anscombe suggests correcting detected heteroscedasticity by

transforming to (e) with e = 1 1 2b1 .

I Applied to the initial SLID regression of wages on sex, age, and
education, an auxiliary regression of on b yields b = 0 3449 +
0 08652b , and 2

0 = 567 66 2 = 283 83 on 1 degree of freedom, for which
0.

� The suggested variance-stabilizing transformation using Anscombe’s
rule is

e = 1 1

2
(0 08652)(15 545) = 0 33
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� An auxiliary regression of on the explanatory variables in the main
regression yields 2

0 = 579 08 2 = 289 54 on = 3 degrees of freedom.
– The score statistic for the more general test is not much larger

than that for the regression of on b , implying that the pattern of
non-constant error variance is indeed for the spread of the errors to
increase with the level of .
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9. Summary
I Heavy-tailed errors threaten the efficiency of least-squares estimation;

skewed and multimodal errors compromise the interpretation of the
least-squares fit.
� Non-normality can often be detected by examining the distribution

of the least-squares residuals, and frequently can be corrected by
transforming the data.

I It is common for the variance of the errors to increase with the level of
the response variable.
� This pattern of non-constant error variance can often be detected in a

plot of residuals against fitted values.

c°

Diagnosing Nonlinearity and Other Ills 57

� Strategies for dealing with non-constant error variance include
transformation of the response variable to stabilize the variance;
the substitution of weighted-least-squares estimation for ordinary
least squares; and the correction of coefficient standard errors for
heteroscedasticity.

� A rough rule of thumb is that non-constant error variance seriously
degrades the least-squares estimator only when the ratio of the largest
to smallest variance is about 10 or more.

I Simple forms of nonlinearity can often be detected in compo-
nent+residual plots.
� Once detected, nonlinearity can frequently be accommodated by

variable transformations or by altering the form of the model (to
include a quadratic term in an explanatory variable, for example).

� Component+residual plots adequately reflect nonlinearity when the
explanatory variables are themselves not strongly nonlinearly related.
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I Discrete explanatory variables divide the data into groups.
� A simple incremental -test for nonlinearity compares the sum of

squares accounted for by the linear regression of on with the sum
of squares accounted for by differences in the group means.

� Likewise, tests of non-constant variance can be based upon compar-
isons of spread in the different groups.

I A statistically sophisticated general approach to selecting a transfor-
mation of or an is to imbed the linear-regression model in a more
general model that contains a parameter for the transformation.
� The Box-Cox procedure selects a power transformation of to

normalize the errors.
� The Box-Tidwell procedure selects power transformations of the ’s

to linearize the regression of on the ’s.
� In both cases, ‘constructed-variable’ plots help us to decide whether

individual observations are unduly influential in determining the
transformation parameters.

c°

Diagnosing Nonlinearity and Other Ills 59

I Simple score tests are available to determine the need for a transforma-
tion and to test for non-constant error variance.
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