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1. Introduction
I When there is a perfect linear relationship among the regressors in a

linear model, the least-squares coefficients are not uniquely defined.

I A strong, but less than perfect, linear relationship among the ’s causes
the least-squares coefficients to be unstable:
� Coefficient standard errors are large, reflecting the imprecision of

estimation of the ’s;
� consequently confidence intervals for the ’s are broad.
� See Figure 1.

c°

Collinearity and Model Selection 2

X1

X2 X2

X1

Y Y Y

X2

X1

Alternative
least-squares
planes

(a) (c)(b)

Figure 1. (a) Low correlation between 1 and 2 – regression plane well
supported; (b) perfect correlation between 1 and 2, showing two of the
infinite number of least-squares planes; (c) high but not perfect correlation
between 1 and 2 – regression plane not well supported.
c°

Collinearity and Model Selection 3

I Caveats:
� Except in certain contexts — such as timeseries regression —

collinearity is not a common problem in social-science applications of
linear models.
– Insufficient variation in explanatory variables, small samples, and

large error variance are more frequently the source of imprecision in
estimation.

� Methods that are commonly employed as cures for collinearity — in
particular, biased estimation and variable selection — can easily be
worse than the disease.
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� The detection of collinearity may not have practical implications.
– The standard errors of the regression estimates are the bottom line:
– If these estimates are precise, then the degree of collinearity is

irrelevant.
– If the estimates are imprecise, then knowing that the culprit is

collinearity is of use only if the study can be re-designed to decrease
the correlations among the ’s, which is usually impossible in
observational research.
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2. Goals:
I To explain the nature of the collinearity ‘problem’ in regression.

I To introduce simple diagnostics for measuring collinearity.

I To describe several ‘solutions’ to the collinearity problem and to gain an
appreciation of their limitations.

I To consider criteria for selecting statistical models in a more general
framework.
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3. Detecting Collinearity
I To summarize what we know:

� When there is a perfect linear relationship among the ’s,
1 1 + 2 2 + · · · + = 0

where 1 2 are not all 0:
– The least-squares normal equations do not have a unique solution.
– The sampling variances of the regression coefficients are infinite.

� Perfect collinearity is usually the product of some error in formulating
the linear model, such as failing to employ a baseline category in
dummy regression.
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� When collinearity is less than perfect:
– The sampling variance of the least-squares slope coefficient is

( ) =
1

1 2 ×
2

( 1) 2

where
· 2 is the squared multiple correlation for the regression of on

the other ’s,
· and 2 =

P
( )2 ( 1) is the variance of .

– The term 1 (1 2), called the variance-inflation factor (VIF)
indicates the impact of collinearity on the precision of .

– The width of the confidence interval for is proportional to the
square root of the VIF.

– It is not until approaches .9 that the precision of estimation is
halved (see Figure 2).
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Figure 2. The square root of the variance-inflation factor as a function of
the multiple correlation for the regression of on the other ’s.
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3.1 Generalized Variance-Inflation Factors
I Variance-inflation factors are not fully applicable to models that include

related sets of regressors, such as dummy regressors constructed from
a polytomous categorical variable or polynomial regressors.

I The reasoning underlying this qualification is subtle:
� The correlations among a set of dummy regressors are affected by the

choice of baseline category and coding scheme.
� Similarly, the correlations among a set of polynomial regressors in

an explanatory variable (e.g., 2 3) are affected by adding a
constant to the -values.

� Neither of these changes alters the fit of the model to the data,
however, so neither is fundamental.

� We are not concerned, therefore, with the ‘artificial’ collinearity among
dummy regressors or polynomial regressors in the same set.
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� We are instead interested in the relationships between regressors
generated to represent the effects of different explanatory variables.

� As a consequence, we can legitimately employ variance-inflation
factors to examine the impact of collinearity on the coefficients of
numerical regressors, or on any single-degree-of-freedom effects
(such as a single dummy variable constructed to represent a dichoto-
mous explanatory variable), even when sets of dummy regressors or
polynomial regressors are present in the model.

I Fox and Monette generalize the notion of variance inflation to sets of
related regressors.
� The standard variance-inflation factors represents the impact of

collinearity on the squared length of the confidence interval for a
coefficient.

� The generalization of a confidence interval for a single coefficient is a
joint confidence region for two or more coefficients.
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� Fox and Monette show how to measure the impact of collinearity on
the squared size of the confidence region for coefficients, calling the
resulting index a generalized variance-inflation factor.
– They suggest taking the 1 2 power of the GVIF to make the index

comparable across different values of .
– This is analogous to using the square root of the VIF for a single

coefficient.

I Suppose that the regressors of interest are collected into a set called
X1, and the remaining regressors are in X2.
� The set X1, for example, could contain related dummy regressors.
� Then

GVIF1 =
detR11 detR22

detR

c°



Collinearity and Model Selection 12

– Here, R11 is the correlation matrix forX1;
– R22 is the correlation matrix forX2;
– and R is the matrix of correlations among all of the variables.
– det is a number associated with a square matrix, called its determi-

nant. Determinants are a standard topic in linear algebra.

I The GVIF does not depend on non-essentials such as choice of baseline
category or coding scheme for dummy regressors.
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4. Coping With Collinearity: No Quick Fix
I When 1 and 2 are strongly collinear, the data contain little information

about the impact of 1 on holding 2 constant, because there is little
variation in 1 when 2 is fixed. (Think about the added-variable plot for
1.)

� Of course, the same is true for 2 fixing 1.

I There are several strategies for dealing with collinear data but none
magically extracts nonexistent information from the data.
� Rather, the research problem is redefined, often subtly and implicitly.
� Sometimes the redefinition is reasonable; usually it is not.

I The ideal solution to the problem of collinearity is to collect new data
in such a manner that the problem is avoided — for example, by
experimental manipulation of the ’s.
� This solution is rarely practical.

I There are several less adequate solutions:
c°
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4.1 Model Re-Specification
I Although collinearity is a data problem, not (necessarily) a deficiency of

the model, one approach is to re-specify the model.
� Perhaps several regressors in the model can be conceptualized as

alternative indicators of the same construct.
– Then these measures can be combined or one can be chosen to

represent the others.
– High correlations among the ’s indicate high reliability.

� Alternatively, we can reconsider whether we really need to control for
2 (for example) in examining the relationship of to 1.

– Re-specification of this variety is possible only where the original
model was poorly thought out, or where the researcher is willing to
abandon (some of) the goals of the research.
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4.2 Variable Selection
I A common, but usually misguided, approach to collinearity is variable

selection, where some procedure is employed to reduce the regressors
in the model to a less highly correlated set.

I Stepwise Methods:
(1) Forward stepwise methods add explanatory variables to the model

one at a time. At each step, the variable that yields the largest
increment in 2 is selected. The procedure stops when the increment
is smaller than a preset criterion.

(2) Backward stepwise methods are similar, except that the procedure
starts with the full model and deletes variables one at a time.

(3) Forward/backward methods combine the two approaches.

c°



Collinearity and Model Selection 16

� Stepwise methods frequently are abused by researchers who interpret
the order of entry of ’s as an index of their ‘importance.’
– Suppose that there are two highly correlated ’s that have nearly

identical large correlations with ; only one will enter the
regression equation.

– A small modification to the data, or a new sample, could easily
reverse the result.

I Subset Methods:
� Stepwise methods can fail to turn up the optimal subset of regressors

of a given size.
� It is feasible to examine all subsets of regressors even when is large.
� Subset techniques also have the advantage of revealing alternative,

nearly equivalent models, and thus avoid the appearance of a uniquely
‘correct’ result.
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I Some additional cautions about variable selection:
� Variable selection results in a re-specified model that usually does not

address the original research questions.
– If the original model is correctly specified, then coefficient estimates

following variable selection are biased.
� When regressors occur in sets (e.g., of dummy variables), then these

sets should be kept together during selection.
– Likewise, when there are hierarchical relations among regressors,

these relations should be respected — for example, don’t remove a
main effect when an interaction to which it is marginal is included in
the model.

� Coefficient standard errors calculated following explanatory-variable
selection overstate the precision of results.

I Variable selection has applications to statistical modeling even when
collinearity is not an issue, particularly in prediction (see below).
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4.3 Biased Estimation
I The essential idea here is to trade a small amount of bias in the

coefficient estimates for a substantial reduction in coefficient sampling
variance, producing a smaller mean-squared error of estimation of the

’s.

I By far the most common biased estimation method is ridge regression
(due to Hoerl and Kennard).

I Like variable selection, biased estimation is not a panacea for collinearity.
� Ridge regression involves the arbitrary selection of a ‘ridge constant,’

which controls the extent to which ridge estimates differ from the
least-squares estimates.

� The larger the ridge constant, the greater the bias and the smaller the
variance of the ridge estimator (see Figure 3).

� To pick an optimal ridge constant — or even a good one — generally
requires knowledge about the unknown ’s.
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Figure 3. The squared bias, variance, and MSE of the ridge estimator as a
function of the ridge constant, compared to the MSE of the OLS estimator.
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4.4 Prior Information About the Regression
Coefficients
I A final approach is to introduce additional prior information that reduces

the ambiguity produced by collinearity.

I Here is a particularly simple case:
� We wish to estimate the model

= + 1 1 + 2 2 + 3 3 +

where is savings, 1 is income from wages and salaries, 2 is
dividend income from stocks, and 3 is interest income.

� We have trouble estimating 2 and 3 because 2 and 3 are highly
correlated.

� We have reason to believe that 2 = 3, and denote the common
quantity .

� If 2 and 3 were not so highly correlated, then we could test this
belief as a hypothesis.
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� In the current situation, we can fit the model
= + 1 1 + ( 2 + 3) +

incorporating our belief in the equality of 2 and 3 in the specification
of the model, and thus eliminating the collinearity problem (along with
the possibility of testing the belief).
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4.5 Some Comparisons
I The several approaches to collinear data have much in common:

� Model re-specification can involve variable selection, and variable
selection re-specifies the model.

� Variable selection constrains the coefficients of deleted regressors to
zero.

� Variable selection produces biased coefficient estimates.
– We hope that the trade off of bias against variance is favorable, but

because the bias depends on the unknown regression coefficients,
we have no assurance that this will be the case.

� Certain types of prior information result in a re-specified model.
� Biased-estimation methods like ridge regression place prior constraints

on the values of the ’s.
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I Conclusion: Mechanical model-selection and modification procedures
disguise the substantive implications of modeling decisions.
� These methods generally cannot compensate for weaknesses in the

data and are no substitute for judgment and thought.
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5. Model Selection
I I have touched on issues of model selection at several points, often

simplifying a model after preliminary statistical hypothesis tests

I Issues of model search extend beyond the selection of explanatory
variables or terms to include in a regression model to questions such as
the removal of outliers and variable transformations.

I The strategy of basing model selection on hypothesis tests is problematic
for a number of reasons:
� Simultaneous inference.
� The fallacy of affirming the consequent.
� The impact of large samples on hypothesis tests.
� Exaggerated precision following model selection.
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I There are several general strategies for addressing these concerns:
� Using alternative model-selection criteria.
� Compensating for simultaneous inference (e.g., by Bonferroni adjust-

ment or by model validation).
� Avoiding model selection by resisting the temptation of simplify a

model.
� Model averaging — accounting for uncertainty by weighting alternative

models according to their degree of support from the data.
� Mode validation — using part of the data to develop a statistical model

and the rest for statistical inference.
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5.1 Model Selection Criteria
I Model selection is conceptually simplest when our goal is prediction—

that is, the development of a regression model that will predict new data
as accurately as possible.

I I assume that we have observations on a response variable , and
a set of contending statistical models M = { 1 2 } for ;
model has regression coefficients.

I 2 “corrected” for degrees of freedom:

e2 1
( )2

2

= 1
1 × RSS

TSS
where RSS is the residual sum of squares and ( )2 the residual
variance under model .
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I Mallows’s statistic, which estimates the mean-squared error of
prediction under the model:P ( )2

2 + 2

= ( + 1 )( 1) +

where the error variance estimate 2 is based on the full model fit to the
data, containing all +1 regressors; and is the incremental -statistic
for testing the hypothesis that the regressors omitted from model
have population coefficients of 0.

I The cross-validation criterion:

CV

P
=1

³
b ( )

´2

where b ( ) is the predicted value for the th obseration obtained from a
model fit without this observation. We prefer the model with the smallest
value of CV .
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I The generalized cross-validation criterion:

GCV
× RSS

2
res

I The Akaike information criterion:
AIC log b( )2 + 2

where b( )2 =
³P ( )2

´
is the MLE of the error variance for model .

I Schwartz’s Bayesian information criterion:
BIC log b( )2 + log

Note that the BIC penalizes lack of parsimony more than the AIC does.

I Regardless of the criterion applied, automatic model-selection methods
attend to the predictive adequacy of regression models and are blind to
their substantive interpretability.
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I Model-selection criteria such as the AIC and BIC are not limited to
comparing models selected by automatic methods.
� One of the currently popular applications of the BIC is to justify the

removal of small, but “statistically significant,” terms in regression
models fit to large samples of data.

� But researchers should feel free to remove “statistically significant”
terms from a statistical model based on the substantive judgment that
these terms are too small to be of interest regardless of the value of
the BIC.

c°

Collinearity and Model Selection 30

5.2 Model Validation
I In model validation, part of the data (called the “training” or “exploratory”

sub-sample) is used to specify a statistical model, which is then evalu-
ated using the other part of the data (the “validation” or “confirmatory”
sub-sample).

I The process of data exploration, model fitting, model criticism, and
model re-specification is typically iterative, requiring several failed
attempts before an adequate description of the data is achieved.
� In the process, variables may be dropped from the model; terms

such as interactions may be incorporated or deleted; variables may
be transformed; and unusual data may be corrected, removed, or
otherwise accommodated.

� The risk of iterative modeling is that we will capitalize on chance—
over-fitting the data and overstating the strength of our results.
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I An ideal solution would be to collect new data with which to validate a
model, but this solution is often impractical.

I Model validation simulates the collection of new data by randomly
dividing the data that we have in hand into two parts—the first part to be
used for exploration and model formulation, the second for checking the
model, formal estimation, and testing.

I Barnard: “The simple idea of splitting a sample into two and then
developing the hypothesis on the basis of one part and testing it on
the remainder may perhaps be said to be one of the most seriously
neglected ideas in statistics, if we measure the degree of neglect by
the ratio of the number of cases where a method could give help to the
number where it is actually used.”
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6. Summary
I Perfect collinearity occurs when one regressor in a linear model is a

perfect linear function of others.
� Under prefect collinearity, the least-squares regression coefficients are

not unique.

I Less-than-perfect collinearity occurs when one regressor is highly
correlated with others, a situation that causes its regression coefficient
to become unstable
� For example, the standard error of the coefficient is much larger than

it would otherwise be.

I The variance-inflation factor 1 (1 2) indicates the impact of collinearity
on the precision of .
� Variance inflation can be extended to sets of regression coefficients,

such as coefficients for a set of related dummy regressors.
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I Several methods are employed to deal with collinearity problems (short
of collecting new, non-collinear data), including model respecification,
variable selection, biased estimation, and the introduction of additional
information.
� The first three approaches have intrinsic limitations, and the fourth is

rarely practical.

I There are several criteria beyond hypothesis testing that can be used
for model selection.
� Automatic methods of model selection are justified for pure prediction

problems and are otherwise problematic.

I Model validation protects the integrity of statistical inference following
model selection by dividing the data into two parts — a training sub-
sample used to develop a statistical model and a validation subsample
used to check the model and to perform statistical inference.
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