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1. Introduction
I Linear statistical models make strong assumptions about the structure

of data, which often do not hold in applications.

I The method of least-squares is very sensitive to the structure of the data,
and can be markedly influenced by one or a few unusual observations.

I We could abandon linear models and least-squares estimation in favor
of nonparametric regression and robust estimation.

I Alternatively, we can adapt and extend methods for examining and
transforming data to diagnose problems with a linear model, and to
suggest solutions.
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2. Goals:
I To distinguish among regression outliers, high-leverage observations,

and influential observations.

I To show how outlyingness, leverage, and influence can be measured.

I To introduce added-variable (‘partial-regression’) plots as a means of
displaying leverage and influence on particular coefficients.
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3. Outliers, Leverage, and Influence
I Unusual data are problematic in linear models fit by least squares

because they can unduly influence the results of the analysis, and
because their presence may be a signal that the model fails to capture
important characteristics of the data.

I Some central distinctions are illustrated in Figure 1 for the simple
regression model = + + .
� In simple regression, an outlier is an observation whose response-

variable value is conditionally unusual given the value of the explana-
tory variable.

� In contrast, a univariate outlier is a value of or that is uncon-
ditionally unusual; such a value may or may not be a regression
outlier.
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Figure 1. Unusual data in regression: (a) a low-leverage and hence un-
influential outlier; (b) a high-leverage and hence influential outlier; (c) a
high-leverage in-line observation. In each case, the solid line is the least-
-squares line for all of the data; the broken line is the least-squares line
with the unusual observation omitted.
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� Regression outliers appear in (a) and (b).
– In (a), the outlying observation has an -value that is at the center

of the distribution; deleting the outlier has little impact on the
least-squares fit.

– In (b), the outlier has an unusual -value; its deletion markedly
affects both the slope and the intercept. Because of its unusual -
value, the outlying last observation in (b) exerts strong leverage on
the regression coefficients, while the outlying middle observation in
(a) is at a low-leverage point. The combination of high leverage with
a regression outlier produces substantial influence on the regression
coefficients.

– In (c), the last observation has no influence on the regression
coefficients even though it is a high-leverage point, because this
observation is in line with the rest of the data.
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� The following heuristic formula helps to distinguish among the three
concepts of influence, leverage and discrepancy (‘outlyingness’):

Influence on Coefficients = Leverage × Discrepancy

I A simple example with real data from Davis (1990) appears in Figure
2. The data record the measured and reported weight of 183 male and
female subjects who engage in programs of regular physical exercise.
Davis’s data can be treated in two ways:

1. We could regress reported weight ( ) on measured weight ( ), a
dummy variable for sex ( , coded 1 for women and 0 for men), and an
interaction regressor (formed as the product × ):

d = 1 36 + 0 990 + 40 0 0 725( × )
(3 28) (0 043) (3 9) (0 056)

2 = 0 89 = 4 66
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Figure 2. (a) Regressing reported weight on measured weight, sex, and
their interaction; (b) regressing measured weight on reported weight, sex,
and their interaction.
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� Were these results taken seriously, we would conclude that men are
unbiased reporters of their weights (because 0 and 1 1), while
women tend to over-report their weights if they are relatively light and
under-report if they are relatively heavy.

� The figure makes it clear that the differential results for women and
mean are due to one erroneous data point.

� Correcting the data produces the regression
d = 1 36 + 0 990 + 1 98 0 0567( × )

(1 58) (0 021) (2 45) (0 0385)
2 = 0 97 = 2 24
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2. We could regress measured weight on reported weight, sex, and their
interaction:

[ = 1 79 + 0 969 + 2 07 0 00953( × )
(5 92) (0 076) (9 30) (0 147)

2 = 0 70 = 8 45
� The outlier does not have much impact on the regression coefficients

because the value of for the outlying observation is near for
women.

� There is, however, a marked effect on the multiple correlation and
standard error: For the corrected data, 2 = 0 97 and = 2 25.
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4. Assessing Leverage: Hat-Values
I The hat-value is a common measure of leverage in regression. These

values are so named because it is possible to express the fitted values
b (‘ -hat’) in terms of the observed values :

b = 1 1 + 2 2 + · · · + + · · · + =
X

=1

� Thus, the weight captures the contribution of observation to
the fitted value b : If is large, then the th observation can have a
substantial impact on the th fitted value.

I Properties of the hat-values:
� =

P
=1

2 , and so the hat-value summarizes the potential
influence (the leverage) of on all of the fitted values.

� 1 1
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� The average hat-value is = ( + 1) .
� In simple-regression analysis, the hat-values measure distance from

the mean of :

=
1
+

( )2P
=1( )2

� In multiple regression, measures distance from the centroid (point of
means) of the ’s, taking into account the correlational and variational
structure of the ’s, as illustrated for = 2 in Figure 3. Multivariate
outliers in the -space are thus high-leverage observations. The
response-variable values are not at all involved in determining
leverage.

I For Davis’s regression of reported weight on measured weight, the
largest hat-value by far belongs to the 12th subject, whose measured
weight was wrongly recorded as 166 kg.: 12 = 0 714. This quantity is
many times the average hat-value, = (3 + 1) 183 = 0 0219.
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Figure 3. Contours of constant leverage in multiple regression with two
explanatory variables, 1 and 2. The two observations marked with solid
black dots are have equal hat-values.
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I Recall Duncan’s regression of occupational prestige on income and
education for 45 U. S. occupations in 1950:

\Prestige = 6 06 + 0 599× Income + 0 546× Education
(4 27) (0 120) (0 098)

� An index plot of hat-values for the observations in Duncan’s regression
is shown in Figure 4 (a), with a scatterplot for the explanatory variables
in Figure 4 (b).
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Figure 4. Duncan’s occupational prestige regression: (a) hat-values; (b)
scatterplot for education and income, showing contours of constant lever-
age at 2× and 3× .
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5. Detecting Outliers: Studentized Residuals
I Discrepant observations usually have large residuals, but even if the

errors have equal variances (as assumed in the general linear model),
the residuals do not:

( ) = 2(1 )

� High-leverage observations tend to have small residuals, because
these observations can coerce the regression surface to be close to
them.

I Although we can form a standardized residual by calculating
0 =

1
this measure is slightly inconvenient because its numerator and
denominator are not independent, preventing 0 from following a
-distribution: When | | is large, =

pP
2 ( 1), which

contains 2, tends to be large as well.
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I Suppose that we refit the model deleting the th observation, obtaining
an estimate ( ) of that is based on the remaining 1 observations.
� Then the studentized residual

=
( ) 1

has independent numerator and denominator, and follows a -
distribution with 2 degrees of freedom.

� An equivalent procedure for finding the studentized residuals employs
a ‘mean-shift’ outlier model

= + 1 1 + · · · + + +

where is a dummy regressor set to one for observation and zero
for all other observations:

=

½
1 for obs.
0 otherwise
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� Thus
( ) = + 1 1 + · · · +

( ) = + 1 1 + · · · for 6=
– It would be natural to specify this model if, before examining the

data, we suspected that observation differed from the others.
– Then to test 0: = 0, we can calculate 0 = b SE(b). This test

statistic is distributed as 2 under 0, and is the studentized
residual .

c°

Unusual and Influential Data 18

5.1 Testing for Outliers
I In most applications we want to look for any outliers that may occur in

the data; we can in effect refit the mean-shift model times, producing
studentized residuals 1 2 . (It is not literally necessary to
perform auxiliary regressions.)
� Usually, our interest then focuses on the largest absolute , denoted

max.
� Because we have picked the biggest of test statistics, it is not

legitimate simply to use 2 to find a -value for max.

I One solution to this problem of simultaneous inference is to perform a
Bonferroni adjustment to the -value for the largest absolute : Let
0 = Pr( 2 max).

� Then the Bonferroni -value for testing the statistical significance of
max is = 2 0.
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Unusual and Influential Data 19

� Note that a much larger max is required for a statistically significant
result than would be the case for an ordinary individual -test.

I Another approach is to construct a quantile-comparison plot for the
studentized residuals, plotting against either the or normal distribution.

I In Davis’s regression of reported weight on measured weight, the
largest studentized residual by far belongs to the incorrectly coded 12th
observation, with 12 = 24 3.
� Here, 2 = 183 3 2 = 178, and Pr( 178 24 3) 10 58.
� The Bonferroni -value for the outlier test is 2 × 183 × 10 58 =
4× 10 56, an unambiguous result.

I For Duncan’s occupational prestige regression, the largest studentized
residual belongs to ministers, with minister = 3 135.
� The Bonferroni -value is 2× 45× Pr( 45 2 2 3 135) = 143.
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6. Measuring Influence
I Influence on the regression coefficients combines leverage and discrep-

ancy.

I The most direct measure of influence simply expresses the impact on
each coefficient of deleting each observation in turn:

= ( ) for = 1 and = 0 1

where the are the least-squares coefficients calculated for all of the
data, and the ( ) are the least-squares coefficients calculated with
the th observation omitted. (So as not to complicate the notation here, I
denote the least-squares intercept as 0.)

I One problem associated with using the is their large number —
( + 1).

� It is useful to have a single summary index of the influence of each
observation on the least-squares fit.
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� Cook (1977) has proposed measuring the ‘distance’ between the
and the corresponding ( ) by calculating the -statistic for the

‘hypothesis’ that = ( ) for = 0 1 .
– This statistic is recalculated for each observation = 1 .
– The resulting values should not literally be interpreted as -tests,

but rather as a distance measure that does not depend upon the
scales of the ’s.

– Cook’s statistic can be written (and simply calculated) as

=
02

+ 1
×
1

– In effect, the first term in the formula for Cook’s is a measure of
discrepancy, and the second is a measure of leverage.

– We look for values of that are substantially larger than the rest.
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I Because all of the deletion statistics depend on the hat-values and
residuals, a graphical alternative is to plot the against the and to
look for observations for which both are big. A slightly more sophisticated
version of this plot that incorporates Cook’s is given below.

I For Davis’s regression of reported weight on measured weight, Cook’s
points to the obviously discrepant 12th observation:

Cook’s 12 = 85 9 (next largest, 21 = 0 065)

I For Duncan’s regression, the largest Cook’s is for ministers, 6 =
0 566.
� Figure 5 displays a plot of studentized residuals versus hat-values,

with the areas of the plotted circles proportional to values of Cook’s
. The lines on the plot are at = ±2 (on the vertical axis), and at
= 2 and 3 (on the horizontal axis).

� Four observations that exceed these cutoffs are identified on the plot.
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� Notice that reporters have a relatively large residual but are at a
low-leverage point, while railroad engineers have high leverage but a
small studentized residual.

I In developing the concept of influence in regression, I have focused
on changes in regression coefficients. Other regression outputs, such
as the set of coefficient sampling variances and covariances, are also
subject to influence.
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Figure 5. Influence plot for Duncan’s occupational prestige regression.
The areas of the circles are proportional to Cook’s distance.
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7. Numerical Cutoffs for Diagnostic Statistics
I I have refrained from suggesting specific numerical criteria for identifying

noteworthy observations on the basis of measures of leverage and
influence: I believe that it is generally more effective to examine the
distributions of these quantities directly to locate unusual values.
� For studentized residuals, outlier-testing provides a numerical cutoff,

but even this is no substitute for graphical examination of the residuals.

I Nevertheless, numerical cutoffs can be of some use, as long as they are
not given too much weight, and especially when they are employed to
enhance graphical displays.
� A line can be drawn on a graph at the value of a numerical cutoff, and

observations that exceed the cutoff can be identified individually.

I Cutoffs for a diagnostic statistic may be derived from statistical theory,
or they may result from examination of the sample distribution of the
statistic.
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I Cutoffs may be absolute, or they may be adjusted for sample size.
� For some diagnostic statistics, such as measures of influence,

absolute cutoffs are unlikely to identify noteworthy observations in
large samples.

� In part, this characteristic reflects the ability of large samples to absorb
discrepant data without changing the results substantially, but it is
still often of interest to identify relatively influential points, even if no
observation has strong absolute influence.

� The cutoffs presented below are derived from statistical theory:

7.1 Hat-Values
I Belsley, Kuh, and Welsch suggest that hat-values exceeding about twice

the average = ( + 1) are noteworthy.

I In small samples, using 2 × tends to nominate too many points for
examination, and 3× can be used instead.
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7.2 Studentized Residuals
I Beyond the issue of ‘statistical significance,’ it sometimes helps to call

attention to residuals that are relatively large.

I Under ideal conditions, about five percent of studentized residuals are
outside the range | | 2. It is therefore reasonable to draw attention
to observations outside this range.

7.3 Measures of Influence
I Many cutoffs have been suggested for different measures of influence,

including the following size-adjusted cutoff for Cook’s D, due to
Chatterjee and Hadi:

4

1

I Absolute cutoffs for , such as 1, risk missing relatively influential
data.
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8. Joint Influence: Added-Variable Plots
I As illustrated in Figure 6, subsets of observations can be jointly

influential or can offset each other’s influence.
� Influential subsets or multiple outliers can often be identified by

applying single-observation diagnostics, such as Cook’s and
studentized residuals, sequentially.

� It can be important to refit the model after deleting each point, because
the presence of a single influential value can dramatically affect the fit
at other points, but the sequential approach is not always successful.

I Although it is possible to generalize deletion statistics to subsets of
several points, the very large number of subsets usually renders this
approach impractical.

I An attractive alternative is to employ graphical methods, and a partic-
ularly useful influence graph is the added-variable plot (also called a
partial-regression plot or an partial-regression leverage plot).
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Figure 6. Jointly influential observations: (a) a pair of jointly influential
points; (b) a widely separated jointly infuential pair; (c) two points that
offset each other’s influence. In each case the heavier solid line is the
least-squares line for all of the data, the broken line deletes the black point,
and the lighter solid line deletes both the gray and the black points.
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� Let (1) represent the residuals from the least-squares regression of
on all of the ’s with the exception of 1:

= (1) +
(1)
2 2 + · · · + (1)

+
(1)

� Likewise, (1) are the residuals from the least-squares regression of
1 on all the other ’s:

1 =
(1) +

(1)
2 2 + · · · + (1)

+
(1)

� The notation emphasizes the interpretation of the residuals (1) and
(1) as the parts of and 1 that remain when the effects of 2

are ‘removed.’
� The residuals (1) and (1) have the following interesting properties:

1. The slope from the least-squares regression of (1) on (1) is simply
the least-squares slope 1 from the full multiple regression.
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2. The residuals from the simple regression of (1) on (1) are the same
as those from the full regression:

(1)
= 1

(1)
+

No constant is required, because both (1) and (1) have means of 0.
3. The variation of (1) is the conditional variation of 1 holding the other

’s constant and, as a consequence, the standard error of 1 in the
auxiliary simple regression

SE( 1) = qP (1)2

is (except for ) the multiple-regression standard error of 1. Unless
1 is uncorrelated with the other ’s, its conditional variation is smaller

than its marginal variation — much smaller, if 1 is strongly collinear
with the other ’s.
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� Plotting (1) against (1) permits us to examine leverage and influence
on 1. Because of properties 1–3, this plot also provides a visual
impression of the precision of estimation of 1.

� Similar added-variable plots can be constructed for the other regres-
sion coefficients:

Plot ( ) versus ( ) for each = 0

I Illustrative added-variable plots are shown in Figure 7, using data
from Duncan’s regression of occupational prestige on the income and
educational levels of 45 U.S. occupations:

\Prestige = 6 06 + 0 599× Income + 0 546× Education
(4 27) (0 120) (0 098)

2 = 0 83 = 13 4
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Figure 7. Added-variable plots for Duncan’s occupational prestige regres-
sion, (a) for income, and (b) for education.
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� The added-variable plot for income (a) reveals three unusual data
points:
– ministers, whose income is unusually low given the educational level

of the occupation; and
– railroad conductors and railroad engineers, whose incomes are

unusually high given education.
– Together, ministers and railroad conductors reduce the income

slope; railroad engineers, while a high-leverage point, are more in
line with the rest of the data.

– Remember that the horizontal variable in this added-variable plot is
the residual from the regression of income on education, and thus
values far from 0 in this direction are for occupations with incomes
that are unusually high or low given their levels of education.
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� The added-variable plot for education (b) shows that the same three
observations have relatively high leverage on the education coefficient:
– ministers and railroad conductors tend to increase the education

slope;
– railroad engineers appear to be closer in line with the rest of the

data.

I Deleting ministers and conductors produces the fitted regression
\Prestige = 6 41 + 0 867× Income + 0 332× Education

(3 65) (0 122) (0 099)
2 = 0 88 = 11 4

which has a larger income slope and smaller education slope than the
original regression.
� The estimated standard errors are likely optimistic, because relative

outliers have been trimmed away.
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� Deleting railroad engineers, along with ministers and conductors,
further increases the income slope and decreases the education slope,
but the change is not dramatic: Income = 0 931 Education = 0 285.
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9. Should Unusual Data Be Discarded?
I Although problematic data should not be ignored, they also should not

be deleted automatically and without reflection:

I It is important to investigate why an observation is unusual.
� Truly bad data (e.g., as in Davis’s regression) can be corrected or

thrown away.
� When a discrepant data-point is correct, we may be able to understand

why the observation is unusual.
– For Duncan’s regression, for example, it makes sense that ministers

enjoy prestige not accounted for by the income and educational
levels of the occupation.

– In a case like this, we may choose to deal separately with an outlying
observation.
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I Outliers or influential data may motivate model respecification.
� For example, the pattern of outlying data may suggest the introduction

of additional explanatory variables.
– If, in Duncan’s regression, we can identify a variable that produces

the unusually high prestige of ministers (net of their income and ed-
ucation), and if we can measure that variable for other observations,
then the variable could be added to the regression.

� In some instances, transformation of the response variable or of an
explanatory variable may draw apparent outliers towards the rest of
the data, by rendering the error distribution more symmetric or by
eliminating nonlinearity.

� We must, however, be careful to avoid ‘over-fitting’ the data —
permitting a small portion of the data to determine the form of the
model.
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I Except in clear-cut cases, we are justifiably reluctant to delete observa-
tions or to respecify the model to accommodate unusual data.
� Some researchers reasonably adopt alternative estimation strategies,

such as robust regression, which continuously downweights outlying
data rather than simply including or discarding them.

� Because these methods assign zero or very small weight to highly
discrepant data, however, the result is generally not very different from
careful application of least squares, and, indeed, robust-regression
weights can be used to identify outliers.
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10. Summary
I Unusual data are problematic in linear models fit by least squares

because they can substantially influence the results of the analysis, and
because they may indicate that the model fails to capture important
features of the data.

I Observations with unusual combinations of explanatory-variables values
have high leverage in a least-squares regression. The hat-values
provide a measure of leverage. A rough cutoff for noteworthy hat-values
is 2 = 2( + 1) .
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I A regression outlier is an observation with an unusual response-
variable value given its combination of explanatory-variable values.
The studentized residuals can be used to identify outliers, through
graphical examination or a Bonferroni test for the largest absolute

. If the model is correct (and there are no true outliers), then each
studentized residual follows a -distribution with 2 degrees of
freedom.

I Observations that combine high leverage with a large studentized
residual exert substantial influence on the regression coefficients.
Cook’s -statistic provides a summary index of influence on the
coefficients. A rough cutoff is 4 ( 1).

I Subsets of observations can be jointly influential. Added-variable plots
are useful for detecting joint influence on the regression coefficients. The
added-variable plot for the regressor is formed using the residuals
from the least-squares regressions of and on all of the other ’s.
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I Outlying and influential data should not be ignored, but they also should
not simply be deleted without investigation. ‘Bad’ data can often be
corrected. ‘Good’ observations that are unusual may provide insight
into the structure of the data, and may motivate respecification of the
statistical model used to summarize the data.
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