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1. Introduction
I Analysis of variance (ANOVA) describes the partition of the response-

variable sum of squares in a linear model into ‘explained’ and ‘unex-
plained’ components.

I The term also refers to procedures for fitting and testing linear models in
which the explanatory variables are categorical.
� A single categorical explanatory variable (factor or classification)

corresponds to one-way analysis of variance;
� two factors to two-way analysis of variance;
� three factors to three-way analysis of variance;
� and so on.

c°

Analysis of Variance 2

2. Goals:
I To introduce statistical models for one- and two-way analysis of variance.

I To show how the models can be fit to data by placing restrictions on their
parameters and appropriately coding regressors.

I To explain how interaction is reflected in two-way analysis of variance.

I To show how the incremental-sum-of-squares approach can be adapted
to testing main and interaction effects in two-way analysis of variance.
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3. One-Way ANOVA
I Dummy regressors can be employed to code a one-way ANOVA model.

I For example, for a three-category classification:
= + 1 1 + 2 2 +

with
Group 1 2

1 1 0
2 0 1
3 0 0

I The response variable expectation (population mean) in group is .

c°



Analysis of Variance 4

I Because the error has a mean of 0 under the usual linear-model
assumptions, taking the expectation of both sides of the model produces
the following relationships between group means and model parameters:

Group 1: 1 = + 1 × 1 + 2 × 0 = + 1

Group 2: 2 = + 1 × 0 + 2 × 1 = + 2

Group 3: 3 = + 1 × 0 + 2 × 0 =

� There are three parameters ( 1 and 2) and three group means, so
we can solve uniquely for the parameters in terms of the group means:

= 3

1 = 1 3

2 = 2 3

� Thus represents the mean of the baseline category (group 3), and
1 and 2 capture differences between the other group means and the

mean of the baseline category.
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I One-way analysis of variance focuses on testing for differences among
group means.
� The omnibus -statistic for the model tests 0: 1 = 2 = 0, which

corresponds to 0: 1 = 2 = 3, the null hypothesis of no differences
among the population group means.

I Our consideration of one-way analysis of variance might well end here,
but for a desire to develop methods that generalize easily to higher-way
ANOVA.
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3.1 The One-Way ANOVA Model
I New notation:

� denotes the th observation within the th of groups.
� is the number of observations in the th group.
� =

P
=1 is the total number of observations.

� ( ) represents the population mean in group (as before).

I The one-way ANOVA model:
= + +

where:
� should represent the general level of the response variable in the

population.
� should represent the effect on the response variable of membership

in the th group.
� is an error variable that follows the usual linear-model assumptions.
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I Upon taking expectations: = + .
� The parameters of the model are, therefore, under-determined, for

there are + 1 parameters (including ) but only population group
means.

� For example, for = 3:
1 = + 1

2 = + 2

3 = + 3

– Even if we knew the three population group means, we could not
solve uniquely for the four parameters.

� Because the parameters of the model are under-determined, they
cannot be uniquely estimated.
– To estimate the model, we would need to code one dummy

regressor for each group-effect parameter , and the resulting
dummy regressors would be perfectly collinear.
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I One solution is to place a linear restriction on the parameters of the
model:

0 + 1 1 + · · · + = 0
where the ’s are pre-specified constants, not all equal to 0.
� All linear restrictions yield the same -test for the null hypothesis of no

differences in population group means.
– For example, if we employ the restriction = 0, we are in effect

deleting the parameter for the last category, making it a baseline
category. The result is the dummy-coding scheme.

– Alternatively, we could use the restriction = 0, which is equivalent
to deleting the constant term from the linear model, in which case
the ‘effect’ parameters and group means are identical: = .
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3.2 ‘Sigma’ Constraints
I It is advantageous to select a restriction that produces easily inter-

pretable parameters and estimates, and that generalizes usefully to
more complex models:

X

=1

= 1 + 2 + · · · + = 0

I Employing this restriction (called a sigma constraint) to solve for the
parameters produces

=

P

=

� The dot (in ) indicates averaging over the range of a subscript, here
over groups. The grand or general mean , then, is the average of
the population group means, while gives the difference between the
mean of group and the grand mean.
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� The hypothesis of no differences in group means
0: 1 = 2 = · · · =

is equivalent to the hypothesis that all of the effect parameters are
zero

0: 1 = 2 = · · · = = 0

I The sigma-constrained model can be estimated by coding deviation
regressors, an alternative to the dummy-coding scheme.
� We require 1 deviation regressors, 1 2 1, the th of which

is coded according to the following rule:

=
1 for observations in group
1 for observations in group
0 for observations in all other groups
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� For example, when = 3:
( 1) ( 2)

group 1 2

1 1 0
2 0 1
3 1 1

– Writing out the equations for the group means in terms of the
deviation regressors:

group 1: 1 = + 1× 1 + 0× 2 = + 1

group 2: 2 = + 0× 1 + 1× 2 = + 2

group 3: 3 = 1× 1 1× 2 = 1 2

– The equation for the third group incorporates the sigma constraint,
since 3 = 1 2 is equivalent to 1 + 2 + 3 = 0.
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– The omnibus -statistic tests the hypothesis 0: 1 = 2 = 0, which,
under the sigma constraint, implies that 3 is 0 as well — and that all
of the population group means are equal.

I Although it is often convenient to fit the one-way ANOVA model by
least-squares regression, it is also possible to estimate the model and
calculate sums of squares directly.
� The sample mean in group is the least-squares estimator of the

corresponding population mean . Estimates of and the may
therefore be written as follows:

= b =
P

=

= b =

� The fitted -values are the group means,
b = + = + ( ) =
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� The regression and residual sums of squares therefore take particu-
larly simple forms in one-way analysis of variance:

RegSS =
X

=1

X

=1

³
b

´2
=
X

=1

¡ ¢2

RSS =
X

=1

X

=1

³
b
´2
=
XX¡ ¢2

� This information can be presented in an ANOVA table:
Source

Groups
P ¡ ¢2

1
RegSS

1

RegMS
RMS

Residual
PP¡ ¢2 RSS

Total
PP¡ ¢2

1
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I I will use Duncan’s occupational-prestige data to illustrate one-way
analysis of variance.
� Parallel boxplots for prestige in three types of occupations appear in

Figure 1 (a).
– Prestige, recall, is a percentage, and the data push both the lower

and upper boundaries of 0 and 100 percent, suggesting the logit
transformation in Figure 1 (b).

– The data are better-behaved on the logit scale, which eliminates the
skew in the blue-collar and professional groups and pulls in all of
the outlying observations, with the exception of store clerks in the
white-collar category.
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Figure 1. Parallel boxplots for (a) prestige and (b) the logit of prestige by
type of occupation.
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� Means, standard deviations, and frequencies for prestige within
occupational types are as follows:

Prestige
Type of Occupation Mean Standard Deviation Frequency
Professional and managerial 80 44 14 11 18
White collar 36 67 11 79 6
Blue collar 22 76 18 05 21

– Professional occupations therefore have the highest average level of
prestige, followed by white-collar and blue-collar occupations.

� The order of the group means is the same on the logit scale:
logit(Prestige/100)

Type of Occupation Mean Standard Deviation
Professional and managerial 1 6321 0 9089
White collar 0 5791 0 5791
Blue collar 1 4821 1 0696
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� On both scales, the standard deviation is greatest among the blue-
collar occupations and smallest among the white-collar occupations,
but the differences are not very large.

� Using the logit of prestige as the response variable, the one-way
ANOVA for the Duncan data is

Sum of Mean
Source Squares df Square
Groups 95 550 2 47 775 51 98 ¿ 0001
Residuals 38 604 42 0 919
Total 134 154 44

– Occupational types account for nearly three-quarters of the vari-
ation in the logit of prestige among these occupations ( 2 =
95 550 134 154 = 0 712 ).
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4. Two-Way ANOVA
I Notation for population means in the two-way classification:

1 2 · · ·
1 11 12 · · · 1 1

2 21 22 · · · 2 2... ... ... ... ...
1 2 · · ·
1 2 · · ·

� Within each cell of the design there is a population cell mean for
the response variable. Extending the dot notation, the marginal mean
of the response variable in row isP

=1
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� The marginal mean in column isP
=1

and the grand mean isP P

× =

P
=

P

I If and do not interact in determining the response variable, then the
partial relationship between each factor and does not depend upon
the category at which the other factor is ‘held constant.’
� This pattern is illustrated in Figure 2 (a) for the simple case where

= = 2.
– The difference in cell means across the two categories of is the

same within the two categories of (and is therefore equal to the
difference in the marginal means):

11 21 = 12 22 = 1· 2·
– No interaction implies parallel ‘profiles’ of cell means.
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(a) No Interaction
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Figure 2. No interaction (a) and interaction (b) in the two-way classification.
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– Parallel profiles also imply that the column difference for categories
1 and 2 is constant across rows, and is equal to the difference in

column marginal means:
11 12 = 21 22 = 1 2

� Interaction — where the row difference changes across columns (and
the column difference changes across rows) — is illustrated in Figure
2 (b).
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I The generalization of this is as follows:
� For any number of categories of and of , no interaction implies

that all corresponding row differences are constant across columns,
0 = 0 0 0 = 0 for all 0 and 0

and, equivalently, that all corresponding column differences are
constant across rows,

0 = 0 0 0 = 0 for all 0 and 0

� When interactions are absent, the partial effect of each factor —
the factor’s main effect — is therefore given by differences in the
population marginal means.
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4.1 Patterns of Means in the Two-Way Classification
I Several patterns of relationship in the two-way classification, all showing

no interaction, are graphed in Figure 3:
� in (a) there are both row and column main effects;
� in (b) only column main effects;
� in (c) only row main effects;
� in (d) neither row nor column main effects.

I Figure 4 shows two different patterns of interactions:
� In (a), the interaction is dramatic: The order of row effects changes

across columns and vice-versa. Interaction of this sort is sometimes
called disordinal.

� In (b), the interaction is less dramatic.
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(a) R and C Main Effects
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Figure 3. Patterns of association: (a) Row and Column main effects; (b)
Column main effects only; (c) Row main effects only; (d) no effects.
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Figure 4. Two patterns of interaction in the two-way classification.
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I Even when interactions are absent in the population, we cannot expect
perfectly parallel profiles of sample means: There is sampling error in
sampled data.
� We have to determine whether departures from parallelism observed

in a sample are sufficiently large to be statistically significant, and, if
significant, are sufficiently large to be of interest.

� In general, if interactions are non-negligible, then we do not interpret
the main effects of the factors — consistent with the principle of
marginality.

I The following table shows means ( ), standard deviations ( ), and
cell frequencies ( ) for data from a social-psychological experiment,
reported by Moore and Krupat (1971), designed to determine how
the relationship between conformity and social status is influenced by
‘authoritarianism.’
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Authoritarianism
Partner’s Status Low Medium High
Low 8 900 7 250 12 63

2 644 3 948 7 347
10 4 8

High 17 40 14 27 11 86
4 506 3 952 3 934
5 11 7

� Because of the conceptual-rigidity component of authoritarianism,
Moore and Krupat expected that low-authoritarian subjects would be
more responsive than high-authoritarian subjects to the social status
of their partner.
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� The cell means are graphed along with the data in Figure 5, and
appear to confirm the experimenters’ expectations.
– There are two outlying observations in the low-status partner,

high-authoritarianism condition.

c°

Analysis of Variance 29
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Figure 5. Mean conformity by authoritarianism and partner’s status, for
Moore and Krupat’s data. The observations are jittered horizontally.
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4.2 The Two-Way ANOVA Model
I Our first concern is to test the null hypothesis of no interaction.

� Based on the previous discussion, this hypothesis can be expressed
in terms of the cell means:

0: 0 = 0 0 0 for all 0 and 0

– In words: the row effects are the same within all levels of the column
factor.

� Rearranging terms,
0: 0 = 0 0 0 for all 0 and 0

– That is, the column effects are invariant across rows.
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I It is convenient to express hypotheses concerning main effects in terms
of the marginal means.
� Thus, for the row classification we have the null hypothesis

0: 1 = 2 = · · · =
and for the column classification

0: 1 = 2 = · · · =
� The main-effect hypotheses are testable whether interactions are

present or absent, but these hypotheses are generally of interest only
when the interactions are nil.

I The two-way ANOVA model provides a convenient means for testing the
hypotheses about main effects and interactions. The model is

= + + + +

where
� is the th observation in row , column of the table;
� is the general mean of ;

c°



Analysis of Variance 32

� and are main-effect parameters, for row-effects and column-
effects, respectively;

� are interaction parameters; and
� (0 2) and independent.

I Taking expectations, the model becomes
( ) = + + +

� Since there are × population cell means and 1 + + + ( × )
parameters, the parameters of the model are not uniquely determined
by the cell means.

� As in one-way ANOVA, the indeterminacy of the model can be
overcome by imposing 1 + + independent restrictions on its
parameters.
– It is convenient to select restrictions that make it simple to test the

hypotheses of interest.
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– With this purpose in mind, we specify the following sigma constraints
on the model parameters:

X

=1

= 0

X

=1

= 0

X

=1

= 0 for all = 1

X

=1

= 0 for all = 1

– At first glance, it seems as if we have specified too many constraints,
for the equations define 1 + 1 + + restrictions.

– One of the restrictions on the interactions is redundant, however.
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– In short-hand form, the sigma constraints specify that each set of
parameters sums to 0 over each of its coordinates.

I The constraints produce the following solution for model parameters in
terms of population cell and marginal means:

=

=

=

=

= +
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� The hypothesis of no row main effects is therefore equivalent to 0: all
= 0, for under this hypothesis

1 = 2 = · · · = =

� Likewise, the hypothesis of no column main effects is equivalent to 0:
all = 0, since then

1 = 2 = · · · = =

� Finally, it is not difficult to show that the hypothesis of no interactions
is equivalent to 0: all = 0.
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4.3 Fitting the Two-Way ANOVA Model to Data
I Since the least-squares estimator of is the sample cell mean

=

P
=1

least-squares estimators of the constrained model parameters follow
immediately

b = =

PP

×

b = =

P

b = =

P

b = +
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� The residuals are just the deviations of the observations from their cell
means, since the fitted values are the cell means:

= ( + + + )

=

I In testing hypotheses about sets of model parameters, however, we
require incremental sums of squares for each set, and (unless all of the
cell frequencies are equal) there is no way of calculating these sums
of squares directly.
� As in one-way analysis of variance, the restrictions on the two-way

ANOVA model can be used to produce deviation-coded regressors.
� Incremental sums of squares may then be calculated in the usual

manner.

I To illustrate this procedure, we will examine a two-row × three-column
classification:
� In light of the restriction 1+ 2 = 0, 2 can be deleted from the model,

substituting 1.
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� Similarly, because 1 + 2 + 3 = 0, 3 can be replaced by 1 2.
� The interactions in the 2 × 3 classification satisfy the following

constraints:
11 + 12 + 13 = 0

21 + 22 + 23 = 0

11 + 21 = 0

12 + 22 = 0

13 + 23 = 0

– Although there are five such constraints, the fifth follows from the
first four.)

� We can, as a consequence, delete all of the interaction parameters
except 11 and 12, substituting for the remaining four parameters in
the following manner:
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13 = 11 12

21 = 11

22 = 12

23 = 13 = 11 + 12

I These observations lead to the following coding of regressors for the
2× 3 classification:

cell ( 1) ( 1) ( 2) ( 11) ( 12)
row column 1 1 2 1 1 1 2

1 1 1 1 0 1 0
1 2 1 0 1 0 1
1 3 1 1 1 1 1
2 1 1 1 0 1 0
2 2 1 0 1 0 1
2 3 1 1 1 1 1
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� Here, 1 is the regressor for the row main effects;
� 1 and 2 are the regressors for the column main effects;
� 1 1 and 1 2 are the interaction regressors.

– The notation for the interaction regressors is suggestive of multipli-
cation, and in fact we can see that 1 1 is the product of 1 and 1,
and that 1 2 is the product of 1 and 2.

I I have constructed these regressors to reflect the constraints on the
model, but they can also be coded mechanically by applying these rules:

1. There are 1 regressors (and hence degrees of freedom) for the
row main effects; the th such regressor, , is coded according to the
following scheme:

=
1 if obs. is in row
1 if obs. is in row
0 if obs. is in any other row
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2. There are 1 regressors (and df ) for the column main effects; the th
such regressor, , is coded according to the following scheme:

=
1 if obs. is in column
1 if obs. is in column
0 if obs. is in any other column

3. There are ( 1)( 1) regressors (and df ) for the interactions.
These interaction regressors consist of all pairwise products of the 1
main-effect regressors for rows and 1 main-effect regressors for
columns.
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4.4 Testing Hypotheses in Two-Way ANOVA
I I have specified constraints on the two-way ANOVA model so that testing

hypotheses about the parameters of the constrained model is equivalent
to testing hypotheses about interactions and main effects of the two
factors.

I Tests for interactions and main effects can be constructed by the
incremental sum of squares approach.
� Let SS( ) denote the regression sum of squares for the full

model, which includes both sets of main effects and the interactions.
� The regression sums of squares for other models are similarly

represented.
– For example, for the no-interaction model, we have SS( );
– and for the model that omits the column main-effect regressors, we

have SS( ).
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– This last model violates the principle of marginality, but it plays a
role in constructing the incremental sum of squares for testing the
column main effects.

� As usual, incremental sums of squares are given by differences
between the regression sums of squares for alternative models:

SS( | ) = SS( ) SS( )

SS( | ) = SS( ) SS( )

SS( | ) = SS( ) SS( )

SS( | ) = SS( ) SS( )
SS( | ) = SS( ) SS( )

– We read SS( | ), for example, as ‘the sum of squares for
interaction after the main effects,’ and SS( | ) as ‘the sum of
squares for the row main effects after the column main effects and
ignoring the interactions.’
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– The residual sum of squares is
RSS =

XXX
2

=
XXX

( )2

= TSS SS( )

I The incremental sum of squares for interaction, SS( | ), is appropri-
ate for testing the null hypothesis of no interaction, 0: all = 0.

I In the presence of interactions, we can use SS( | ) and SS( | )
to test hypotheses concerning main effects (i.e., differences among row
and column marginal means), but these hypotheses are usually not of
interest when the interactions are important.
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I In the absence of interactions, SS( | ) and SS( | ) can be used to
test for main effects, but the use of SS( | ) and SS( | ) is also
appropriate.
� If, however, interactions are present, then -tests based on SS( | )

and SS( | ) do not test the main-effect null hypotheses 0: all = 0
and 0: all = 0; instead, the interaction parameters become
implicated in these tests.
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I These remarks are summarized in the following table:
Source 0

1 SS( | ) all = 0 ( = 0 )

SS( | ) all = 0|all = 0
( = 0 |no int.)

1 SS( | ) all = 0 ( = 0)

SS( | ) all = 0|all = 0
( = 0|no int.)

( 1)( 1) SS( | )
all = 0

( 0 = 0 0 0)
Residual TSS SS( )
Total 1 TSS
I Certain authors prefer main-effects tests based upon SS( | ) and

SS( | ) (sometimes called ‘Type-II sums of squares’) because, if
interactions are absent, tests based upon these sums of squares are
more powerful than those based upon SS( | ) and SS( | ).
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I Other authors prefer SS( | ) and SS( | ) (sometimes called
‘Type-III’ sums of squares) because, in the presence of interactions,
tests based upon these sums of squares have a straight-forward (if
usually uninteresting) interpretation.

I I believe that either approach is reasonable. It is important to understand,
however, that while SS( ) and SS( ) are useful as building blocks of
SS( | ) and SS( | ), it is in general inappropriate to use SS( ) and
SS( ) to test hypotheses about the and main effects: Each of these
sums of squares depends upon the other set of main effects (and the
interactions, if they are present).
� Consequently, the sequential (“Type-I”) sums of squares SS( ) SS( | )

and SS( | ) do not provide an appropriate test for the main ef-
fects.
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4.5 An Example: Moore and Krupat’s Conformity
Experiment
I For the Moore and Krupat conformity data, factor is partner’s status

and factor is authoritarianism.

I Sums of squares for various models fit to the data are as follows:
SS( ) = 391 44

SS( ) = 215 95

SS( ) = 355 42

SS( ) = 151 87

SS( ) = 204 33

SS( ) = 3 7333

TSS = 1209 2
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I The ANOVA for the experiment is shown in the following table:
Source

Partner’s Status 1
| 239.57 239.57 11.43 .002
| 212.22 212.22 10.12 .003

Authoritarianism 2
| 36.02 18.01 0.86 .43
| 11.62 5.81 0.28 .76

Status× Authoritarianism 175.49 2 87.74 4.18 .02
Residual 817.76 39 20.97
Total 1209.2 44

I A researcher would not normally report both sets of main-effect sums of
squares.
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5. Summary
I One-way analysis of variance examines the relationship between a

quantitative response variable and a categorical explanatory variable (or
factor).

I The one-way ANOVA model
= + +

is under-determined because it uses + 1 parameters to model
group means.
� The model can be solved, however, by placing a restriction on its

parameters.
� Setting one of the ’s to 0 leads to dummy-regressor coding.
� Constraining the ’s to sum to 0 leads to deviation-regressor coding.
� The two coding schemes are equivalent in that they provide the same
fit to the data, producing the same regression and residual sums of
squares.
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I The two-way analysis of variance model
= + + + +

incorporates main effects and interactions of two factors.
� The factors interact when the profiles of population cell means are not

parallel.

I The two-way ANOVA model is over-parameterized, but it may be fit to
data by placing suitable restrictions on its parameters.
� A convenient set of restrictions is provided by sigma constraints,

specifying that each set of parameters ( , , and ) sums to 0 over
each of its coordinates.

� Testing hypotheses about the sigma-constrained parameters is
equivalent to testing interaction-effect and main-effect hypotheses
about cell and marginal means.

c°



Analysis of Variance 52

I There are two reasonable procedures for testing main-effect hypotheses
in two-way ANOVA:
� Tests based on SS( | ) and SS( | ) (Type-III sums of squares)

employ models that violate the principle of marginality, but are valid
whether or not interactions are present.

� Tests based on SS( | ) and SS( | ) (Type-II sums of squares)
conform to the principle of marginality, but are valid only if interactions
are absent.

c°


