Lecture Notes 6. Analysis of Variance	1. Introduction - Analysis of variance (ANOVA) describes the partition of the responsevariable sum of squares in a linear model into 'explained' and 'unexplained' components. The term also refers to procedures for fitting and testing linear models in which the explanatory variables are categorical. - A single categorical explanatory variable (factor or classification) corresponds to one-way analysis of variance; - two factors to two-way analysis of variance; - three factors to three-way analysis of variance; - and so on.
2. Goals: - To introduce statistical models for one- and two-way analysis of variance. - To show how the models can be fit to data by placing restrictions on their parameters and appropriately coding regressors. - To explain how interaction is reflected in two-way analysis of variance. - To show how the incremental-sum-of-squares approach can be adapted to testing main and interaction effects in two-way analysis of variance.	3. One-Way ANOVA Dummy regressors can be employed to code a one-way ANOVA model. For example, for a three-category classification: $Y_{i}=\alpha+\gamma_{1} D_{i 1}+\gamma_{2} D_{i 2}+\varepsilon_{i}$ with The response variable expectation (population mean) in group j is μ_{j}.

- Because the error ε has a mean of 0 under the usual linear-model assumptions, taking the expectation of both sides of the model produces the following relationships between group means and model parameters:

$$
\begin{array}{ll}
\text { Group 1: } & \mu_{1}=\alpha+\gamma_{1} \times 1+\gamma_{2} \times 0=\alpha+\gamma_{1} \\
\text { Group 2: } & \mu_{2}=\alpha+\gamma_{1} \times 0+\gamma_{2} \times 1=\alpha+\gamma_{2} \\
\text { Group 3: } & \mu_{3}=\alpha+\gamma_{1} \times 0+\gamma_{2} \times 0=\alpha
\end{array}
$$

- There are three parameters (α, γ_{1}, and γ_{2}) and three group means, so we can solve uniquely for the parameters in terms of the group means:

$$
\begin{aligned}
\alpha & =\mu_{3} \\
\gamma_{1} & =\mu_{1}-\mu_{3} \\
\gamma_{2} & =\mu_{2}-\mu_{3}
\end{aligned}
$$

- Thus α represents the mean of the baseline category (group 3), and γ_{1} and γ_{2} capture differences between the other group means and the mean of the baseline category.
- Upon taking expectations: $\mu_{j}=\mu+\alpha_{j}$.
- The parameters of the model are, therefore, under-determined, for there are $m+1$ parameters (including μ) but only m population group means.
- For example, for $m=3$:

$$
\begin{aligned}
& \mu_{1}=\mu+\alpha_{1} \\
& \mu_{2}=\mu+\alpha_{2} \\
& \mu_{3}=\mu+\alpha_{3}
\end{aligned}
$$

- Even if we knew the three population group means, we could not solve uniquely for the four parameters.
- Because the parameters of the model are under-determined, they cannot be uniquely estimated.
- To estimate the model, we would need to code one dummy regressor for each group-effect parameter α_{j}, and the resulting dummy regressors would be perfectly collinear.
- One-way analysis of variance focuses on testing for differences among group means.
- The omnibus F-statistic for the model tests $H_{0}: \gamma_{1}=\gamma_{2}=0$, which corresponds to $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$, the null hypothesis of no differences among the population group means.
- Our consideration of one-way analysis of variance might well end here, but for a desire to develop methods that generalize easily to higher-way ANOVA.

3.1 The One-Way ANOVA Model

New notation:

- $Y_{i j}$ denotes the i th observation within the j th of m groups.
- n_{j} is the number of observations in the j th group.
- $n=\sum_{j=1}^{m} n_{j}$ is the total number of observations.
- $\mu_{j} \equiv E\left(Y_{i j}\right)$ represents the population mean in group j (as before).
- The one-way ANOVA model:

$$
Y_{i j}=\mu+\alpha_{j}+\varepsilon_{i j}
$$

where:

- μ should represent the general level of the response variable in the population.
- α_{j} should represent the effect on the response variable of membership in the j th group.
- $\varepsilon_{i j}$ is an error variable that follows the usual linear-model assumptions.
- One solution is to place a linear restriction on the parameters of the model:

$$
w_{0} \mu+w_{1} \alpha_{1}+\cdots+w_{m} \alpha_{m}=0
$$

where the w 's are pre-specified constants, not all equal to 0 .

- All linear restrictions yield the same F-test for the null hypothesis of no differences in population group means.
- For example, if we employ the restriction $\alpha_{m}=0$, we are in effect deleting the parameter for the last category, making it a baseline category. The result is the dummy-coding scheme.
- Alternatively, we could use the restriction $\mu=0$, which is equivalent to deleting the constant term from the linear model, in which case the 'effect' parameters and group means are identical: $\alpha_{j}=\mu_{j}$.

nalysis of Variance

3.2 'Sigma' Constraints

- It is advantageous to select a restriction that produces easily interpretable parameters and estimates, and that generalizes usefully to more complex models:

$$
\sum_{j=1}^{m} \alpha_{j}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}=0
$$

- Employing this restriction (called a sigma constraint) to solve for the parameters produces

$$
\begin{aligned}
\mu & =\frac{\sum \mu_{j}}{m} \equiv \mu . \\
\alpha_{j} & =\mu_{j}-\mu .
\end{aligned}
$$

- The dot (in μ.) indicates averaging over the range of a subscript, here over groups. The grand or general mean μ, then, is the average of the population group means, while α_{j} gives the difference between the mean of group j and the grand mean.

Analysis of Variance

- The hypothesis of no differences in group means

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{m}
$$

is equivalent to the hypothesis that all of the effect parameters are zero

$$
H_{0}: \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=0
$$

- The sigma-constrained model can be estimated by coding deviation regressors, an alternative to the dummy-coding scheme.
- We require $m-1$ deviation regressors, $S_{1}, S_{2}, \ldots, S_{m-1}$, the j th of which is coded according to the following rule:

$$
S_{j}=\left\{\begin{aligned}
1 & \text { for observations in group } j \\
-1 & \text { for observations in group } m \\
0 & \text { for observations in all other groups }
\end{aligned}\right.
$$

- The omnibus F-statistic tests the hypothesis $H_{0}: \alpha_{1}=\alpha_{2}=0$, which, under the sigma constraint, implies that α_{3} is 0 as well - and that all of the population group means are equal.
- Although it is often convenient to fit the one-way ANOVA model by least-squares regression, it is also possible to estimate the model and calculate sums of squares directly.
- The sample mean $\overline{Y_{j}}$ in group j is the least-squares estimator of the corresponding population mean μ_{j}. Estimates of μ and the α_{j} may therefore be written as follows:

$$
\begin{aligned}
& M=\widehat{\mu}=\frac{\sum \overline{Y_{j}}}{m}=\bar{Y} . \\
& A_{j}=\widehat{\alpha}_{j}=\overline{Y_{j}}-\bar{Y} .
\end{aligned}
$$

- The fitted Y-values are the group means,

$$
\widehat{Y}_{i j}=M+A_{j}=\bar{Y} .+\left(\bar{Y}_{j}-\bar{Y} .\right)=\bar{Y}_{j}
$$

Analysis of Variance

I will use Duncan's occupational-prestige data to illustrate one-way analysis of variance.

- Parallel boxplots for prestige in three types of occupations appear in Figure 1 (a).
- Prestige, recall, is a percentage, and the data push both the lower and upper boundaries of 0 and 100 percent, suggesting the logit transformation in Figure 1 (b).
- The data are better-behaved on the logit scale, which eliminates the skew in the blue-collar and professional groups and pulls in all of the outlying observations, with the exception of store clerks in the white-collar category.
- The regression and residual sums of squares therefore take particularly simple forms in one-way analysis of variance:

$$
\begin{aligned}
\text { RegSS } & =\sum_{j=1}^{m} \sum_{i=1}^{n_{j}}\left(\widehat{Y}_{i j}-\bar{Y}\right)^{2}=\sum_{j=1}^{m} n_{j}\left(\bar{Y}_{j}-\bar{Y}\right)^{2} \\
\mathrm{RSS} & =\sum_{j=1}^{m} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\widehat{Y}_{i j}\right)^{2}=\sum \sum\left(Y_{i j}-\bar{Y}_{j}\right)^{2}
\end{aligned}
$$

- This information can be presented in an ANOVA table:

Source	$S S$	$d f$	$M S$	F
Groups	$\sum n_{j}\left(\bar{Y}_{j}-\bar{Y}\right)^{2}$	$m-1$	$\frac{\text { RegSS }}{m-1}$	$\frac{\text { RegMS }}{\text { RMS }}$
Residual	$\sum \sum\left(Y_{i j}-\bar{Y}_{j}\right)^{2}$	$n-m$	$\frac{\text { RSS }}{n-m}$	
Total	$\sum \sum\left(Y_{i j}-\bar{Y}\right)^{2}$	$n-1$		

Figure 1. Parallel boxplots for (a) prestige and (b) the logit of prestige by type of occupation.

- Means, standard deviations, and frequencies for prestige within occupational types are as follows:

Type of Occupation	Prestige		
Professional and managerial	Mean	Standard Deviation	Frequency
White collar	36.67	14.11	18
Blue collar	22.76	11.79	6

- Professional occupations therefore have the highest average level of prestige, followed by white-collar and blue-collar occupations.
- The order of the group means is the same on the logit scale:

	logit(Prestige/100)	
Type of Occupation	Mean	Standard Deviation
Professional and managerial	1.6321	0.9089
White collar	-0.5791	0.5791
Blue collar	-1.4821	1.0696

4. Two-Way ANOVA

- Notation for population means in the two-way classification:

$$
\begin{array}{c|cccc|c}
& C_{1} & C_{2} & \cdots & C_{c} & \\
\hline R_{1} & \mu_{11} & \mu_{12} & \cdots & \mu_{1 c} & \mu_{1} \cdot \\
R_{2} & \mu_{21} & \mu_{22} & \cdots & \mu_{2 c} & \mu_{2 .} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
R_{r} & \mu_{r 1} & \mu_{r 2} & \cdots & \mu_{r c} & \mu_{r .} \\
\hline & \mu \cdot .1 & \mu_{\cdot 2} & \cdots & \mu_{\cdot c} & \mu \cdot .
\end{array}
$$

- Within each cell of the design there is a population cell mean $\mu_{j k}$ for the response variable. Extending the dot notation, the marginal mean of the response variable in row j is

$$
\mu_{j} . \equiv \frac{\sum_{k=1}^{c} \mu_{j k}}{c}
$$

- On both scales, the standard deviation is greatest among the bluecollar occupations and smallest among the white-collar occupations, but the differences are not very large.
- Using the logit of prestige as the response variable, the one-way ANOVA for the Duncan data is

	Sum of						Mean			
Source	Squares	df	Square	F	p					
Groups	95.550	2	47.775	51.98	$\ll .0001$					
Residuals	38.604	42	0.919							
Total	134.154	44								

- Occupational types account for nearly three-quarters of the variation in the logit of prestige among these occupations ($R^{2}=$ $95.550 / 134.154=0.712$).
- The marginal mean in column k is

$$
\mu_{\cdot k} \equiv \frac{\sum_{j=1}^{r} \mu_{j k}}{r}
$$

and the grand mean is

$$
\mu . . \equiv \frac{\sum_{j} \sum_{k} \mu_{j k}}{r \times c}=\frac{\sum_{j} \mu_{j} .}{r}=\frac{\sum_{k} \mu_{\cdot k}}{c}
$$

- If R and C do not interact in determining the response variable, then the partial relationship between each factor and Y does not depend upon the category at which the other factor is 'held constant.'
- This pattern is illustrated in Figure 2 (a) for the simple case where $r=c=2$.
- The difference in cell means across the two categories of R is the same within the two categories of C (and is therefore equal to the difference in the marginal means):

$$
\mu_{11}-\mu_{21}=\mu_{12}-\mu_{22}=\mu_{1 .}-\mu_{2} .
$$

- No interaction implies parallel 'profiles' of cell means.
(a) No Interaction

(b) Interaction

Figure 2. No interaction (a) and interaction (b) in the two-way classification.
©

Analysis of Variance

- The generalization of this is as follows:
- For any number of categories r of R and c of C, no interaction implies that all corresponding row differences are constant across columns,

$$
\mu_{j k}-\mu_{j^{\prime} k}=\mu_{j k^{\prime}}-\mu_{j^{\prime} k^{\prime}}=\mu_{j} .-\mu_{j^{\prime}} \text { for all } j, j^{\prime} \text { and } k, k^{\prime}
$$

and, equivalently, that all corresponding column differences are constant across rows,

$$
\mu_{j k}-\mu_{j k^{\prime}}=\mu_{j^{\prime} k}-\mu_{j^{\prime} k^{\prime}}=\mu_{\cdot k}-\mu_{\cdot k^{\prime}} \text { for all } j, j^{\prime} \text { and } k, k^{\prime}
$$

- When interactions are absent, the partial effect of each factor the factor's main effect - is therefore given by differences in the population marginal means.
- Parallel profiles also imply that the column difference for categories C_{1} and C_{2} is constant across rows, and is equal to the difference in column marginal means:

$$
\mu_{11}-\mu_{12}=\mu_{21}-\mu_{22}=\mu_{\cdot 1}-\mu_{\cdot 2}
$$

- Interaction - where the row difference changes across columns (and the column difference changes across rows) - is illustrated in Figure 2 (b).

4.1 Patterns of Means in the Two-Way Classification

- Several patterns of relationship in the two-way classification, all showing no interaction, are graphed in Figure 3:
- in (a) there are both row and column main effects;
- in (b) only column main effects;
- in (c) only row main effects;
- in (d) neither row nor column main effects.
- Figure 4 shows two different patterns of interactions:
- In (a), the interaction is dramatic: The order of row effects changes across columns and vice-versa. Interaction of this sort is sometimes called disordinal.
- In (b), the interaction is less dramatic.

Figure 3. Patterns of association: (a) Row and Column main effects; (b) Column main effects only; (c) Row main effects only; (d) no effects.

Even when interactions are absent in the population, we cannot expect perfectly parallel profiles of sample means: There is sampling error in sampled data.

- We have to determine whether departures from parallelism observed in a sample are sufficiently large to be statistically significant, and, if significant, are sufficiently large to be of interest.
- In general, if interactions are non-negligible, then we do not interpret the main effects of the factors - consistent with the principle of marginality.
- The following table shows means $\left(\bar{Y}_{j k}\right)$, standard deviations $\left(S_{j k}\right)$, and cell frequencies $\left(n_{j k}\right)$ for data from a social-psychological experiment, reported by Moore and Krupat (1971), designed to determine how the relationship between conformity and social status is influenced by 'authoritarianism.'

Figure 4. Two patterns of interaction in the two-way classification.

Partner's Status	Authoritarianism			
	Low	Medium	High	
	$\bar{Y}_{j k}$	8.900	7.250	12.63
	$s_{j k}$	2.644	3.948	7.347
	$n_{j k}$	10	4	8
High	$\bar{Y}_{j k}$	17.40	14.27	11.86
	$s_{j k}$	4.506	3.952	3.934
	$n_{j k}$	5	11	7

- Because of the conceptual-rigidity component of authoritarianism, Moore and Krupat expected that low-authoritarian subjects would be more responsive than high-authoritarian subjects to the social status of their partner.
- The cell means are graphed along with the data in Figure 5, and appear to confirm the experimenters' expectations.
- There are two outlying observations in the low-status partner, high-authoritarianism condition.

Analysis of Variance

4.2 The Two-Way ANOVA Model

- Our first concern is to test the null hypothesis of no interaction.
- Based on the previous discussion, this hypothesis can be expressed in terms of the cell means:

$$
H_{0}: \mu_{j k}-\mu_{j^{\prime} k}=\mu_{j k^{\prime}}-\mu_{j^{\prime} k^{\prime}} \text { for all } j, j^{\prime} \text { and } k, k^{\prime}
$$

- In words: the row effects are the same within all levels of the column factor.
- Rearranging terms,

$$
H_{0}: \mu_{j k}-\mu_{j k^{\prime}}=\mu_{j^{\prime} k}-\mu_{j^{\prime} k^{\prime}} \text { for all } j, j^{\prime} \text { and } k, k^{\prime}
$$

- That is, the column effects are invariant across rows.

Figure 5. Mean conformity by authoritarianism and partner's status, for Moore and Krupat's data. The observations are jittered horizontally.

- It is convenient to express hypotheses concerning main effects in terms of the marginal means.
- Thus, for the row classification we have the null hypothesis

$$
H_{0}: \mu_{1} .=\mu_{2} .=\cdots=\mu_{r} .
$$

and for the column classification

$$
H_{0}: \mu_{\cdot 1}=\mu_{\cdot 2}=\cdots=\mu_{\cdot c}
$$

- The main-effect hypotheses are testable whether interactions are present or absent, but these hypotheses are generally of interest only when the interactions are nil.
- The two-way ANOVA model provides a convenient means for testing the hypotheses about main effects and interactions. The model is

$$
Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+\gamma_{j k}+\varepsilon_{i j k}
$$

where

- $Y_{i j k}$ is the i th observation in row j, column k of the $R C$ table;
- μ is the general mean of Y;
- α_{j} and β_{k} are main-effect parameters, for row-effects and columneffects, respectively;
- $\gamma_{j k}$ are interaction parameters; and
- $\varepsilon_{i j k} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$ and independent.
- Taking expectations, the model becomes

$$
\mu_{j k} \equiv E\left(Y_{i j k}\right)=\mu+\alpha_{j}+\beta_{k}+\gamma_{j k}
$$

- Since there are $r \times c$ population cell means and $1+r+c+(r \times c)$ parameters, the parameters of the model are not uniquely determined by the cell means.
- As in one-way ANOVA, the indeterminacy of the model can be overcome by imposing $1+r+c$ independent restrictions on its parameters.
- It is convenient to select restrictions that make it simple to test the hypotheses of interest.

Analysis of Variance

- In short-hand form, the sigma constraints specify that each set of parameters sums to 0 over each of its coordinates.
- The constraints produce the following solution for model parameters in terms of population cell and marginal means:

$$
\begin{aligned}
\mu & =\mu \cdot . \\
\alpha_{j} & =\mu_{j} \cdot-\mu \cdot . \\
\beta_{k} & =\mu_{\cdot k}-\mu \cdot . \\
\gamma_{j k} & =\mu_{j k}-\mu-\alpha_{j}-\beta_{k} \\
& =\mu_{j k}-\mu_{j} \cdot-\mu_{\cdot k}+\mu \cdot .
\end{aligned}
$$

- With this purpose in mind, we specify the following sigma constraints on the model parameters:

$$
\begin{aligned}
& \sum_{j=1}^{r} \alpha_{j}=0 \\
& \sum_{k=1}^{c} \beta_{k}=0 \\
& \sum_{j=1}^{r} \gamma_{j k}=0 \quad \text { for all } k=1, \ldots, c \\
& \sum_{k=1}^{c} \gamma_{j k}=0 \quad \text { for all } j=1, \ldots, r
\end{aligned}
$$

- At first glance, it seems as if we have specified too many constraints, for the equations define $1+1+c+r$ restrictions.
- One of the restrictions on the interactions is redundant, however.
- The hypothesis of no row main effects is therefore equivalent to H_{0} : all $\alpha_{j}=0$, for under this hypothesis

$$
\mu_{1} \cdot=\mu_{2} .=\cdots=\mu_{r} .=\mu .
$$

- Likewise, the hypothesis of no column main effects is equivalent to H_{0} : all $\beta_{k}=0$, since then

$$
\mu \cdot 1=\mu \cdot{ }_{\cdot 2}=\cdots=\mu_{\cdot c}=\mu .
$$

- Finally, it is not difficult to show that the hypothesis of no interactions is equivalent to H_{0} : all $\gamma_{j k}=0$.

Analysis of Variance

4.3 Fitting the Two-Way ANOVA Model to Data

- Since the least-squares estimator of $\mu_{j k}$ is the sample cell mean

$$
\bar{Y}_{j k}=\frac{\sum_{i=1}^{n_{j k}} Y_{i j k}}{n_{j k}}
$$

least-squares estimators of the constrained model parameters follow immediately

$$
\begin{aligned}
M & \equiv \widehat{\mu}=\bar{Y}_{. .}=\frac{\sum \sum \bar{Y}_{j k}}{r \times c} \\
A_{j} & \equiv \widehat{\alpha}_{j}=\bar{Y}_{j .}-\bar{Y} . .=\frac{\sum_{k} \bar{Y}_{j k}}{c}-\bar{Y} . . \\
B_{k} & \equiv \widehat{\beta}_{k}=\bar{Y}_{\cdot k}-\bar{Y}_{. .}=\frac{\sum_{j} \bar{Y}_{j k}}{r}-\bar{Y}_{. .} \\
C_{j k} & \equiv \widehat{\gamma}_{j k}=\bar{Y}_{j k}-\bar{Y}_{j .}-\bar{Y}_{\cdot k}+\bar{Y} . .
\end{aligned}
$$

©

- Similarly, because $\beta_{1}+\beta_{2}+\beta_{3}=0, \beta_{3}$ can be replaced by $-\beta_{1}-\beta_{2}$.
- The interactions in the 2×3 classification satisfy the following constraints:

$$
\begin{aligned}
\gamma_{11}+\gamma_{12}+\gamma_{13} & =0 \\
\gamma_{21}+\gamma_{22}+\gamma_{23} & =0 \\
\gamma_{11}+\gamma_{21} & =0 \\
\gamma_{12}+\gamma_{22} & =0 \\
\gamma_{13}+\gamma_{23} & =0
\end{aligned}
$$

- Although there are five such constraints, the fifth follows from the first four.)
- We can, as a consequence, delete all of the interaction parameters except γ_{11} and γ_{12}, substituting for the remaining four parameters in the following manner:
- The residuals are just the deviations of the observations from their cell means, since the fitted values are the cell means:

$$
\begin{aligned}
E_{i j k} & =Y_{i j k}-\left(M+A_{j}+B_{k}+C_{j k}\right) \\
& =Y_{i j k}-\bar{Y}_{j k}
\end{aligned}
$$

- In testing hypotheses about sets of model parameters, however, we require incremental sums of squares for each set, and (unless all of the cell frequencies $n_{j k}$ are equal) there is no way of calculating these sums of squares directly.
- As in one-way analysis of variance, the restrictions on the two-way ANOVA model can be used to produce deviation-coded regressors.
- Incremental sums of squares may then be calculated in the usual manner.
- To illustrate this procedure, we will examine a two-row \times three-column classification:
- In light of the restriction $\alpha_{1}+\alpha_{2}=0, \alpha_{2}$ can be deleted from the model, substituting $-\alpha_{1}$.

$$
\begin{aligned}
& \gamma_{13}=-\gamma_{11}-\gamma_{12} \\
& \gamma_{21}=-\gamma_{11} \\
& \gamma_{22}=-\gamma_{12} \\
& \gamma_{23}=-\gamma_{13}=\gamma_{11}+\gamma_{12}
\end{aligned}
$$

- These observations lead to the following coding of regressors for the 2×3 classification:

c cell row column		$\left.\begin{array}{rrrrr}\left(\alpha_{1}\right) & \left(\beta_{1}\right) & \left(\beta_{2}\right) & \left(\gamma_{11}\right) & \left(\gamma_{12}\right) \\ R_{1} & C_{1} & C_{2} & R_{1} C_{1} & R_{1} C_{2} \\ \hline 1 & 1 & 1 & 1 & 0 \\ 1 & 0 \\ 1 & 2 & 1 & 0 & 1\end{array}\right) 0$	1			
1	3	1	-1	-1	-1	-1
2	1	-1	1	0	-1	0
2	2	-1	0	1	0	-1
2	3	-1	-1	-1	1	1

- Here, R_{1} is the regressor for the row main effects;
- C_{1} and C_{2} are the regressors for the column main effects;
- $R_{1} C_{1}$ and $R_{1} C_{2}$ are the interaction regressors.
- The notation for the interaction regressors is suggestive of multiplication, and in fact we can see that $R_{1} C_{1}$ is the product of R_{1} and C_{1}, and that $R_{1} C_{2}$ is the product of R_{1} and C_{2}.
- I have constructed these regressors to reflect the constraints on the model, but they can also be coded mechanically by applying these rules:

1. There are $r-1$ regressors (and hence degrees of freedom) for the row main effects; the j th such regressor, R_{j}, is coded according to the following scheme:

$$
R_{i j}=\left\{\begin{aligned}
1 & \text { if obs. } i \text { is in row } j \\
-1 & \text { if obs. } i \text { is in row } r \\
0 & \text { if obs. } i \text { is in any other row }
\end{aligned}\right.
$$

Analysis of Variance

4.4 Testing Hypotheses in Two-Way ANOVA

- I have specified constraints on the two-way ANOVA model so that testing hypotheses about the parameters of the constrained model is equivalent to testing hypotheses about interactions and main effects of the two factors.
- Tests for interactions and main effects can be constructed by the incremental sum of squares approach.
- Let $\operatorname{SS}(\alpha, \beta, \gamma)$ denote the regression sum of squares for the full model, which includes both sets of main effects and the interactions.
- The regression sums of squares for other models are similarly represented.
- For example, for the no-interaction model, we have $\operatorname{SS}(\alpha, \beta)$;
- and for the model that omits the column main-effect regressors, we have $\operatorname{SS}(\alpha, \gamma)$.

2. There are $c-1$ regressors (and df) for the column main effects; the k th such regressor, C_{k}, is coded according to the following scheme:

$$
C_{i k}=\left\{\begin{aligned}
1 & \text { if obs. } i \text { is in column } k \\
-1 & \text { if obs. } i \text { is in column } c \\
0 & \text { if obs. } i \text { is in any other column }
\end{aligned}\right.
$$

3. There are $(r-1)(c-1)$ regressors (and $d f$) for the $R C$ interactions. These interaction regressors consist of all pairwise products of the $r-1$ main-effect regressors for rows and $c-1$ main-effect regressors for columns.

- This last model violates the principle of marginality, but it plays a role in constructing the incremental sum of squares for testing the column main effects.
- As usual, incremental sums of squares are given by differences between the regression sums of squares for alternative models:

$$
\begin{aligned}
\mathrm{SS}(\gamma \mid \alpha, \beta) & =\operatorname{SS}(\alpha, \beta, \gamma)-\operatorname{SS}(\alpha, \beta) \\
\mathrm{SS}(\alpha \mid \beta, \gamma) & =\mathrm{SS}(\alpha, \beta, \gamma)-\mathrm{SS}(\beta, \gamma) \\
\mathrm{SS}(\beta \mid \alpha, \gamma) & =\mathrm{SS}(\alpha, \beta, \gamma)-\mathrm{SS}(\alpha, \gamma) \\
\mathrm{SS}(\alpha \mid \beta) & =\operatorname{SS}(\alpha, \beta)-\operatorname{SS}(\beta) \\
\mathrm{SS}(\beta \mid \alpha) & =\operatorname{SS}(\alpha, \beta)-\operatorname{SS}(\alpha)
\end{aligned}
$$

- We read $\operatorname{SS}(\gamma \mid \alpha, \beta)$, for example, as 'the sum of squares for interaction after the main effects,' and $\operatorname{SS}(\alpha \mid \beta)$ as 'the sum of squares for the row main effects after the column main effects and ignoring the interactions.'
- The residual sum of squares is

$$
\begin{aligned}
\mathrm{RSS} & =\sum \sum \sum E_{i}^{2} \\
& =\sum \sum \sum\left(Y_{i j k}-\bar{Y}_{j k}\right)^{2} \\
& =\mathrm{TSS}-\mathbf{S S}(\alpha, \beta, \gamma)
\end{aligned}
$$

- The incremental sum of squares for interaction, $\mathbf{S S}(\gamma \mid \alpha, \beta)$, is appropriate for testing the null hypothesis of no interaction, H_{0} : all $\gamma_{j k}=0$.
- In the presence of interactions, we can use $\operatorname{SS}(\alpha \mid \beta, \gamma)$ and $\operatorname{SS}(\beta \mid \alpha, \gamma)$ to test hypotheses concerning main effects (i.e., differences among row and column marginal means), but these hypotheses are usually not of interest when the interactions are important.
- These remarks are summarized in the following table:

Source	df	SS	H_{0}
R	$r-1$	SS $(\alpha \mid \beta, \gamma)$	all $\alpha_{j}=0\left(\mu_{j} .=\mu_{j^{\prime}}\right)$
		$\mathbf{S S}(\alpha \mid \beta)$	$\begin{gathered} \text { all } \alpha_{j}=0 \mid \text { all } \gamma_{j k}=0 \\ \left(\mu_{j} .=\mu_{j^{\prime}} \cdot \text { no int. }\right) \end{gathered}$
C	$c-1$	SS($\beta \mid \alpha, \gamma)$	all $\beta_{k}=0\left(\mu \cdot k=\mu \cdot k^{\prime}\right)$
		SS $(\beta \mid \alpha)$	$\begin{gathered} \text { all } \beta_{k}=0 \mid \text { all } \gamma_{j k}=0 \\ \left(\mu \cdot k=\mu \cdot k^{\prime} \mid \text { no int. }\right) \\ \hline \end{gathered}$
$R C$	$(r-1)(c-1)$	$\mathrm{SS}(\gamma \mid \alpha, \beta)$	$\begin{gathered} \text { all } \gamma_{j k}=0 \\ \left(\mu_{j k}-\mu_{j^{\prime} k}=\mu_{j k^{\prime}}-\mu_{j^{\prime} k^{\prime}}\right) \end{gathered}$
Residual	$n-r c$	TSS - SS $(\alpha, \beta, \gamma$,	
Total	$n-1$	TSS	

Certain authors prefer main-effects tests based upon $\operatorname{SS}(\alpha \mid \beta)$ and SS $(\beta \mid \alpha)$ (sometimes called 'Type-II sums of squares') because, if interactions are absent, tests based upon these sums of squares are more powerful than those based upon $\mathrm{SS}(\alpha \mid \beta, \gamma)$ and $\mathrm{SS}(\beta \mid \alpha, \gamma)$.

- In the absence of interactions, $\mathrm{SS}(\alpha \mid \beta)$ and $\mathrm{SS}(\beta \mid \alpha)$ can be used to test for main effects, but the use of $\mathrm{SS}(\alpha \mid \beta, \gamma)$ and $\operatorname{SS}(\beta \mid \alpha, \gamma)$ is also appropriate.
- If, however, interactions are present, then F-tests based on $\mathrm{SS}(\alpha \mid \beta)$ and $\operatorname{SS}(\beta \mid \alpha)$ do not test the main-effect null hypotheses H_{0} : all $\alpha_{j}=0$ and H_{0} : all $\beta_{k}=0$; instead, the interaction parameters become implicated in these tests.
- Other authors prefer $\mathrm{SS}(\alpha \mid \beta, \gamma)$ and $\mathrm{SS}(\beta \mid \alpha, \gamma)$ (sometimes called 'Type-III' sums of squares) because, in the presence of interactions, tests based upon these sums of squares have a straight-forward (if usually uninteresting) interpretation.
- I believe that either approach is reasonable. It is important to understand, however, that while $\mathrm{SS}(\alpha)$ and $\mathrm{SS}(\beta)$ are useful as building blocks of $\operatorname{SS}(\alpha \mid \beta)$ and $\mathrm{SS}(\beta \mid \alpha)$, it is in general inappropriate to use $\operatorname{SS}(\alpha)$ and $\operatorname{SS}(\beta)$ to test hypotheses about the R and C main effects: Each of these sums of squares depends upon the other set of main effects (and the interactions, if they are present).
- Consequently, the sequential ("Type-l") sums of squares $\operatorname{SS}(\alpha), \mathrm{SS}(\beta \mid \alpha)$, and $\mathrm{SS}(\gamma \mid \alpha, \beta)$ do not provide an appropriate test for the R main effects.

4.5 An Example: Moore and Krupat's Conformity Experiment

- For the Moore and Krupat conformity data, factor R is partner's status and factor C is authoritarianism.
- Sums of squares for various models fit to the data are as follows:

$$
\begin{aligned}
\mathrm{SS}(\alpha, \beta, \gamma) & =391.44 \\
\mathrm{SS}(\alpha, \beta) & =215.95 \\
\mathrm{SS}(\alpha, \gamma) & =355.42 \\
\mathrm{SS}(\beta, \gamma) & =151.87 \\
\mathrm{SS}(\alpha) & =204.33 \\
\mathrm{SS}(\beta) & =3.7333 \\
\mathrm{TSS} & =1209.2
\end{aligned}
$$

- The ANOVA for the experiment is shown in the following table:

Source	$S S$	$d f$	$M S$	F	p
Partner's Status	1				
$\alpha \mid \beta, \gamma$	239.57		239.57	11.43	.002
$\alpha \mid \beta$	212.22		212.22	10.12	.003
Authoritarianism	2				
$\beta \mid \alpha, \gamma$	36.02		18.01	0.86	.43
$\beta \mid \alpha$	11.62		5.81	0.28	.76
Status \times Authoritarianism	175.49	2	87.74	4.18	.02
Residual	817.76	39	20.97		
Total	1209.2	44			

A researcher would not normally report both sets of main-effect sums of squares.

5. Summary

- One-way analysis of variance examines the relationship between a quantitative response variable and a categorical explanatory variable (or factor).
- The one-way ANOVA model

$$
Y_{i j}=\mu+\alpha_{j}+\varepsilon_{i j}
$$

is under-determined because it uses $m+1$ parameters to model m group means.

- The model can be solved, however, by placing a restriction on its parameters.
- Setting one of the α_{j} 's to 0 leads to dummy-regressor coding.
- Constraining the α_{j} 's to sum to 0 leads to deviation-regressor coding.
- The two coding schemes are equivalent in that they provide the same fit to the data, producing the same regression and residual sums of squares.
- The two-way analysis of variance model

$$
Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+\gamma_{j k}+\varepsilon_{i j k}
$$

incorporates main effects and interactions of two factors.

- The factors interact when the profiles of population cell means are not parallel.
- The two-way ANOVA model is over-parameterized, but it may be fit to data by placing suitable restrictions on its parameters.
- A convenient set of restrictions is provided by sigma constraints, specifying that each set of parameters (α_{j}, β_{k}, and $\gamma_{j k}$) sums to 0 over each of its coordinates.
- Testing hypotheses about the sigma-constrained parameters is equivalent to testing interaction-effect and main-effect hypotheses about cell and marginal means.
- There are two reasonable procedures for testing main-effect hypotheses in two-way ANOVA:
- Tests based on $\mathrm{SS}(\alpha \mid \beta, \gamma)$ and $\mathrm{SS}(\beta \mid \alpha, \gamma)$ (Type-III sums of squares) employ models that violate the principle of marginality, but are valid whether or not interactions are present.
- Tests based on $\operatorname{SS}(\alpha \mid \beta)$ and $\operatorname{SS}(\beta \mid \alpha)$ (Type-II sums of squares) conform to the principle of marginality, but are valid only if interactions are absent.

