Lecture Notes

6. Analysis of Variance
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1. Introduction

» Analysis of variance (ANOVA) describes the partition of the response-
variable sum of squares in a linear model into ‘explained’ and ‘unex-
plained’ components.

» The term also refers to procedures for fitting and testing linear models in
which the explanatory variables are categorical.
e A single categorical explanatory variable (factor or classification)
corresponds to one-way analysis of variance;

e two factors to two-way analysis of variance;
e three factors to three-way analysis of variance;
e and so on.
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2. Goals:

» To introduce statistical models for one- and two-way analysis of variance.

» To show how the models can be fit to data by placing restrictions on their
parameters and appropriately coding regressors.

» To explain how interaction is reflected in two-way analysis of variance.

» To show how the incremental-sum-of-squares approach can be adapted
to testing main and interaction effects in two-way analysis of variance.

3. One-Way ANOVA

» Dummy regressors can be employed to code a one-way ANOVA model.

» For example, for a three-category classification:
Yi=a+vDin+7Dip+ ¢

with
GrOUp ‘ D1 Do
1 1 0
2 0 1
3 0 O

» The response variable expectation (population mean) in group j is ;.
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» Because the error ¢ has a mean of 0 under the usual linear-model
assumptions, taking the expectation of both sides of the model produces
the following relationships between group means and model parameters:

Group1: py=a+7 X1+ x0=a+v
Group 2: py=a+7 xX0+7x1=a+",
Group 3: py=a+7 X0+ x0=a

e There are three parameters («, v, and ,) and three group means, so
we can solve uniquely for the parameters in terms of the group means:

o= U3
T = H1 T H3
T2 = Ho— H3

e Thus « represents the mean of the baseline category (group 3), and
~, and -, capture differences between the other group means and the
mean of the baseline category.
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» One-way analysis of variance focuses on testing for differences among
group means.
e The omnibus ['-statistic for the model tests Hy: v, = v, = 0, which
corresponds to Hy: p; = uy = g, the null hypothesis of no differences
among the population group means.

» Our consideration of one-way analysis of variance might well end here,
but for a desire to develop methods that generalize easily to higher-way
ANOVA.
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3.1 The One-Way ANOVA Model

» New notation:
e Y;; denotes the ith observation within the jth of m groups.

e n; is the number of observations in the jth group.
e n =) " n;is the total number of observations.
e 11; = E(Y];) represents the population mean in group j (as before).
» The one-way ANOVA model:
Yij=p+a;+e;
where:

¢ /. should represent the general level of the response variable in the
population.

¢ «; should represent the effect on the response variable of membership
in the jth group.

e ¢;; is an error variable that follows the usual linear-model assumptions.
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» Upon taking expectations: y; =y + a.
e The parameters of the model are, therefore, under-determined, for
there are m + 1 parameters (including ;) but only m population group
means.

e For example, for m = 3:

Hp = p+ o
Mo = p+ O
My = p+ a3

— Even if we knew the three population group means, we could not
solve uniquely for the four parameters.

e Because the parameters of the model are under-determined, they
cannot be uniquely estimated.
— To estimate the model, we would need to code one dummy
regressor for each group-effect parameter «;, and the resulting
dummy regressors would be perfectly collinear.
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» One solution is to place a linear restriction on the parameters of the
model:
Wolt + Wiy + + -+ + Wiy = 0
where the w’s are pre-specified constants, not all equal to 0.
e All linear restrictions yield the same F'-test for the null hypothesis of no
differences in population group means.
— For example, if we employ the restriction «,, = 0, we are in effect
deleting the parameter for the last category, making it a baseline
category. The result is the dummy-coding scheme.

— Alternatively, we could use the restriction 1 = 0, which is equivalent
to deleting the constant term from the linear model, in which case
the ‘effect’ parameters and group means are identical: o; = p;.
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3.2 ‘Sigma’ Constraints

» It is advantageous to select a restriction that produces easily inter-
pretable parameters and estimates, and that generalizes usefully to
more complex models:

ZOéj:Oé1+O./2+"'+Oém=0
J=1
» Employing this restriction (called a sigma constraint) to solve for the
parameters produces

_Zﬂj_
Xj = K= M

e The dot (in y.) indicates averaging over the range of a subscript, here
over groups. The grand or general mean ., then, is the average of
the population group means, while «; gives the difference between the
mean of group j and the grand mean.
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e The hypothesis of no differences in group means

Ho:piy = prg =+ = fuy,
is equivalent to the hypothesis that all of the effect parameters are
zero
H(): Q’,1:CY2:"‘:OA,”:O

» The sigma-constrained model can be estimated by coding deviation
regressors, an alternative to the dummy-coding scheme.
e We require m — 1 deviation regressors, S, S, ..., S,,_1, the jth of which
is coded according to the following rule:
1 for observations in group j
—1 for observations in group m
0 for observations in all other groups

Sj =
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e For example, when m = 3:

(a1) (a2)

group| S Sy
1 1 0
2 0 1
3 -1 -1

— Writing out the equations for the group means in terms of the
deviation regressors:
group1: gy =p+1xa+0xay=p+ao
group 2: ps =p+0XxX o +1Xa=pu+ay
group 3: s =p—1xXxag—1Xwm=p—0a;—a
— The equation for the third group incorporates the sigma constraint,
since a3 = —a; — iy is equivalent to ay + as + a3 = 0.
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— The omnibus F'-statistic tests the hypothesis Hj: a; = ay = 0, which,
under the sigma constraint, implies that a3 is 0 as well — and that all
of the population group means are equal.

» Although it is often convenient to fit the one-way ANOVA model by
least-squares regression, it is also possible to estimate the model and
calculate sums of squares directly.

e The sample mean 7] in group j is the least-squares estimator of the
corresponding population mean ;. Estimates of x and the a; may
therefore be written as follows:
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e The regression and residual sums of squares therefore take particu-
larly simple forms in one-way analysis of variance:

m nj

RegsS = -3 (7, - 7) = 3o, (7, - 7
j=1 i=1 J=1

RSS = > > (Yz;,- —%)2 =33 (=Y

j=1 i=1
e This information can be presented in an ANOVA table:

»e Source SS df MS F
M=7 = I =Y. - - RegSS RegMS
p m Groups > n;(Y;-Y)" m-—1 —— RVS
Aj=a =Y -Y. — 2 RSS
e The fitted Y-values are the group means, Residual 323 (Y, —Y,)" n—m n—m
YVy=M+A,=Y.+(Y,-Y.)=Y, Total Y3 (v,;-Y) n—1
© ©
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» | will use Duncan’s occupational-prestige data to illustrate one-way
analysis of variance. @ )
e Parallel boxplots for prestige in three types of occupations appear in °
Figure 1 (a). = - - - L3
— Prestige, recall, is a percentage, and the data push both the lower S - E o I I
and upper boundaries of 0 and 100 percent, suggesting the logit RR.engineer | § ] E -3 g
transformation in Figure 1 (b). $ 397 — reporier — 5 I . 3
— The data are better-behaved on the logit scale, which eliminatesthe | & <o ! Esm_m‘;nage, é - L = T r° g
skew in the blue-collar and professional groups and pulls in all of 2 o ol S &
the outlying observations, with the exception of store clerks in the & Lo . T o
white-collar category. ol — ' == S

Blue-Collar ~ White-Collar  Professional

Type of Occupation

Blue-Collar ~ White-Collar  Professional

Type of Occupation

Figure 1. Parallel boxplots for (a) prestige and (b) the logit of prestige by
type of occupation.

©
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e Means, standard deviations, and frequencies for prestige within
occupational types are as follows:

Prestige
Type of Occupation Mean Standard Deviation | Frequency
Professional and managerial | 80.44 14.11 18
White collar 36.67 11.79 6
Blue collar 22.76 18.05 21

— Professional occupations therefore have the highest average level of
prestige, followed by white-collar and blue-collar occupations.

e The order of the group means is the same on the logit scale:

logit(Prestige/100)
Type of Occupation Mean Standard Deviation
Professional and managerial| 1.6321 0.9089
White collar —0.5791 0.5791
Blue collar —1.4821 1.0696
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e On both scales, the standard deviation is greatest among the blue-
collar occupations and smallest among the white-collar occupations,
but the differences are not very large.

e Using the logit of prestige as the response variable, the one-way
ANOVA for the Duncan data is

Sum of Mean
Source Squares df Square F P
Groups 95.550 2 47.775 51.98 < .0001
Residuals| 38.604 42  0.919
Total 134.154 44

— Occupational types account for nearly three-quarters of the vari-
ation in the logit of prestige among these occupations (R? =
95.550/134.154 = 0.712).
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4. Two-Way ANOVA
» Notation for population means in the two-way classification:
C11 C? T Cc
Ry pyy pgg oo e | p-
Ry | pgy figg =+ Hoe| Ho-

R, Hp1 Mo =0 e | By,
J bt e | b

e Within each cell of the design there is a population cell mean ., for
the response variable. Extending the dot notation, the marginal mean
of the response variable in row j is

_ Dt M

J° c
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e The marginal mean in column £ is
Yoy = Z;; ik
and the grand mean is
_ 2 kM 2oy Yk
.. = = =
rXc r C
» If R and C' do not interact in determining the response variable, then the
partial relationship between each factor and Y does not depend upon
the category at which the other factor is ‘held constant.
e This pattern is illustrated in Figure 2 (a) for the simple case where
r=c=2.

— The difference in cell means across the two categories of R is the
same within the two categories of C' (and is therefore equal to the
difference in the marginal means):

M1 — Ho1 = H1a — Moo = H1. — Ho.
— No interaction implies parallel ‘profiles’ of cell means.
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(a) No Interaction

(b) Interaction

Y Y
Hiz
()/C>R‘1
11
H2
g /‘—/‘/,
Ry
H22
Ha1
T T T T
C, C, C, C,

Figure 2. No interaction (a) and interaction (b) in the two-way classification.
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— Parallel profiles also imply that the column difference for categories
C'1 and () is constant across rows, and is equal to the difference in
column marginal means:

M1 — M1z = Ho1 — Mog = K1 — -2
e Interaction — where the row difference changes across columns (and

the column difference changes across rows) — is illustrated in Figure
2 (b).
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» The generalization of this is as follows:
e For any number of categories  of R and c of C, no interaction implies
that all corresponding row differences are constant across columns,
iy = My = Mg — My = pj. — g forall j, 5" and k) K
and, equivalently, that all corresponding column differences are
constant across rows,

[jk = Hjp = Mk — Py = fr, — e forall 4, j" and k, &'
e When interactions are absent, the partial effect of each factor —

the factor’s main effect — is therefore given by differences in the
population marginal means.
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4.1 Patterns of Means in the Two-Way Classification

» Several patterns of relationship in the two-way classification, all showing
no interaction, are graphed in Figure 3:
e in (a) there are both row and column main effects;

e in (b) only column main effects;
e in (c) only row main effects;
e in (d) neither row nor column main effects.

» Figure 4 shows two different patterns of interactions:
¢ In (a), the interaction is dramatic: The order of row effects changes
across columns and vice-versa. Interaction of this sort is sometimes
called disordinal.

e In (b), the interaction is less dramatic.
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(a) Rand C Main Effects (b) C Main Effects Only

4k
A .
G C, Cs

() R Main Effects Only (d) No Effects

Figure 3. Patterns of association: (a) Row and Column main effects; (b)

Column main effects only; (c) Row main effects only; (d) no effects.
©
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(a)

Ry

(b)

Figure 4. Two patterns of interaction in the two-way classification.
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» Even when interactions are absent in the population, we cannot expect

perfectly parallel profiles of sample means: There is sampling error in
sampled data.

e We have to determine whether departures from parallelism observed
in a sample are sufficiently large to be statistically significant, and, if

significant, are sufficiently large to be of interest.

e In general, if interactions are non-negligible, then we do not interpret

the main effects of the factors — consistent with the principle of
marginality.

» The following table shows means (7jk), standard deviations (.5;;.), and

cell frequencies (n;;) for data from a social-psychological experiment,
reported by Moore and Krupat (1971), designed to determine how
the relationship between conformity and social status is influenced by
‘authoritarianism.

Analysis of Variance

e Because of the conceptual-rigidity component of authoritarianism,

Authoritarianism

Partner’s Status | Low | Medium | High
Low Y  [8900] 7.250 |12.63
5k 2.644| 3.948 |7.347

N 10 4 8
High Y, |17.40| 14.27 [11.86
sk |4.506| 3.952 |3.934

nj 5 11 7

27

Moore and Krupat expected that low-authoritarian subjects would be
more responsive than high-authoritarian subjects to the social status
of their partner.
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e The cell means are graphed along with the data in Figure 5, and
appear to confirm the experimenters’ expectations.
— There are two outlying observations in the low-status partner,

high-authoritarianism condition.

28

Analysis of Variance 29

L16
H 19 L

- H
High-Status Partner
HH

=
E 2 H
L
s L L
o L
o d H
- 7 L _Low-Status Partner .~ H
O~ -~ L 7 HL
L - S - L
LL "d/ LH
LL
o -
L L L
T T T
Low Medium High

Authoritarianism

Figure 5. Mean conformity by authoritarianism and partner’s status, for
Moore and Krupat’s data. The observations are jittered horizontally.

©
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4.2 The Two-Way ANOVA Model

» Our first concern is to test the null hypothesis of no interaction.

in terms of the cell means:
Ho: iy, — g, = o — pyye forall j, 5" and &, &'

factor.

e Rearranging terms,
HO: ,LLJk — l’tj]ﬁ?' = /,Lj/k et /,Lj/k/ fOI’ a” j,j/ and k, k'/
— That is, the column effects are invariant across rows.

e Based on the previous discussion, this hypothesis can be expressed

— In words: the row effects are the same within all levels of the column

30
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» It is convenient to express hypotheses concerning main effects in terms

of the marginal means.
e Thus, for the row classification we have the null hypothesis

Ho: py. = plg. = =+ = [
and for the column classification
Hy: B = o ="""= .,

e The main-effect hypotheses are testable whether interactions are
present or absent, but these hypotheses are generally of interest only
when the interactions are nil.

» The two-way ANOVA model provides a convenient means for testing the
hypotheses about main effects and interactions. The model is
Yiji = p+ o + B + v + €
where
e Y;;; is the ith observation in row j, column k of the RC table;

e /i is the general mean of Y
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e o; and 3, are main-effect parameters, for row-effects and column-
effects, respectively;

e 7, are interaction parameters; and

€

e ;i ~ N(0,02) and independent.
» Taking expectations, the model becomes
pip = E(Yijr) = p+aj + B+,
e Since there are r x ¢ population cell means and 1 + 7 + ¢ + (r X ¢)

parameters, the parameters of the model are not uniquely determined
by the cell means.

e As in one-way ANOVA, the indeterminacy of the model can be
overcome by imposing 1 + r + ¢ independent restrictions on its
parameters.

— It is convenient to select restrictions that make it simple to test the
hypotheses of interest.
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— With this purpose in mind, we specify the following sigma constraints
on the model parameters:

ZO&j =0
j=1

Zﬁk =0
k=1

r

Z’yﬂ{: =0
j=1

ZVJA: =0
k=1

— At first glance, it seems as if we have specified too many constraints,
for the equations define 1 + 1 + ¢ + r restrictions.

— One of the restrictions on the interactions is redundant, however.

forallk=1,....c

forall j =1,....r
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— In short-hand form, the sigma constraints specify that each set of
parameters sums to 0 over each of its coordinates.

» The constraints produce the following solution for model parameters in
terms of population cell and marginal means:

o= fi..

Qj = flj. = fb.
B = por — .
Vjk = My — H— 05— By,

= Hji — My — Mg+ He
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e The hypothesis of no row main effects is therefore equivalent to H: all
«; = 0, for under this hypothesis
Hi- = Hoo = =0 = [y = [
e Likewise, the hypothesis of no column main effects is equivalent to Hy:
all 3,, = 0, since then
o1 = Hea =" = e =}
e Finally, it is not difficult to show that the hypothesis of no interactions
is equivalent to Hy: all v, = 0.
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4.3 Fitting the Two-Way ANOVA Model to Data

» Since the least-squares estimator of ;. is the sample cell mean

Nk

V., — 22:1 Yiﬂc

gk —
nj;

least-squares estimators of the constrained model parameters follow

immediately
— Y.
M=n=Y.= 22 Yk
rXc

_ Y
A =a,=Y;-Y.= ¥y,

C
-~ Y
B, = ﬁ,l,:Y;‘—Y..:M—Y..
T
Cop = Ay =V -V -Vt ¥
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e The residuals are just the deviations of the observations from their cell
means, since the fitted values are the cell means:

Eijr = Y —(M+A;+ B+ Cy)
= Yijp =Y i
» In testing hypotheses about sets of model parameters, however, we
require incremental sums of squares for each set, and (unless all of the
cell frequencies n ;. are equal) there is no way of calculating these sums
of squares directly.
e As in one-way analysis of variance, the restrictions on the two-way
ANOVA model can be used to produce deviation-coded regressors.

e Incremental sums of squares may then be calculated in the usual
manner.

» To illustrate this procedure, we will examine a two-row x three-column
classification:
e In light of the restriction a;; + as = 0, s can be deleted from the model,
substituting —a;.
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e Similarly, because 3, + 3, + 3; = 0, /3; can be replaced by —3, — /3.

e The interactions in the 2 x 3 classification satisfy the following
constraints:

Yutretvs =0
Yo+ Yo+ Vo3 = 0
Yty =0
Y2+ Y22 = 0
Y13+ Y23 = 0
— Although there are five such constraints, the fifth follows from the

first four.)

e We can, as a consequence, delete all of the interaction parameters
except v,; and ,,, substituting for the remaining four parameters in
the following manner:
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Y13 T V11 T 712

Y21 = —Tn

Yoo = —712

Yo3 = —713 = Y11 T V12

» These observations lead to the following coding of regressors for the
2 x 3 classification:

cell (a1) (B1) (B2) (vi1) (712)
row column| R, C; Cy, RC; R(Cy
1 1 1 1 0 1 0
1 2 1 0 1 0 1
1 3 1 -1 -1 -1 -1
2 1 —1 1 0 —1 0
2 2 —1 0 1 0 —1
2 3 -1 -1 -1 1 1




Analysis of Variance

e Here, R, is the regressor for the row main effects;
e (1 and () are the regressors for the column main effects;

e RC} and R,C) are the interaction regressors.

— The notation for the interaction regressors is suggestive of multipli-

cation, and in fact we can see that R;C is the product of R; and (',
and that R;C5 is the product of R; and (5.

» | have constructed these regressors to reflect the constraints on the
model, but they can also be coded mechanically by applying these rules:

1. There are » — 1 regressors (and hence degrees of freedom) for the

row main effects; the jth such regressor, R;, is coded according to the
following scheme:

1 ifobs. iisinrow j
R;j =4 —1 ifobs.iisinrowr
0

if obs. ¢ is in any other row

40
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2. There are ¢ — 1 regressors (and df) for the column main effects; the kth

such regressor, ('}, is coded according to the following scheme:
1 if obs. i isin column k

—1 ifobs. ¢isin column ¢
0 if obs. i is in any other column

3. There are (r — 1)(c — 1) regressors (and df) for the RC' interactions.
These interaction regressors consist of all pairwise products of the r — 1

main-effect regressors for rows and ¢ — 1 main-effect regressors for
columns.

Ci k=
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4.4 Testing Hypotheses in Two-Way ANOVA

» | have specified constraints on the two-way ANOVA model so that testing
hypotheses about the parameters of the constrained model is equivalent

to testing hypotheses about interactions and main effects of the two
factors.

42

» Tests for interactions and main effects can be constructed by the
incremental sum of squares approach.

e Let SS(«, 3,7) denote the regression sum of squares for the full
model, which includes both sets of main effects and the interactions.

e The regression sums of squares for other models are similarly
represented.

— For example, for the no-interaction model, we have SS(«, /3);

— and for the model that omits the column main-effect regressors, we
have SS(«, 7).
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— This last model violates the principle of marginality, but it plays a

role in constructing the incremental sum of squares for testing the
column main effects.

e As usual, incremental sums of squares are given by differences
between the regression sums of squares for alternative models:
SS(v|e, B) = SS(e, 8,7) — SS(a, f)
SS(a|B,7) = SS(e, 8,7) — SS(8,7)
SS(Bla,v) = SS(e, 5,7) — SS(a,7)
SS(0]f) = SS(a, 3) — SS(3)
SS(B)a) = SS(w, ) — SS(«)
— We read SS(v|a, 3), for example, as ‘the sum of squares for
interaction after the main effects, and SS(«|5) as ‘the sum of

squares for the row main effects after the column main effects and
ignoring the interactions.’
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— The residual sum of squares is

RSS = Y >N m?
S ST

= TSS — SS(«, 3,7)

» The incremental sum of squares for interaction, SS(v|«, /3), is appropri-
ate for testing the null hypothesis of no interaction, Hy: all v;;, = 0.

» In the presence of interactions, we can use SS(«a/|3,~) and SS(8|a, )
to test hypotheses concerning main effects (i.e., differences among row
and column marginal means), but these hypotheses are usually not of
interest when the interactions are important.
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» In the absence of interactions, SS(«|f) and SS(3|«) can be used to
test for main effects, but the use of SS(«|f3,~) and SS(8|a, ) is also
appropriate.

e If, however, interactions are present, then F'-tests based on SS(«a/5)
and SS(f3|«) do not test the main-effect null hypotheses Hy: all o; =0
and H: all g, = 0; instead, the interaction parameters become
implicated in these tests.
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» These remarks are summarized in the following table:

Source df SS H,
R r—1 SS(«|f,7) all o; =0 (p;. = pjr.)
all «; =0lall v, =0
SS(a / E
(alB) (pt;- = pyp.Inoint.)
C c—1 SS(5|a, ) all 3, =0 (g = pop)
SS I
(Bler) (p-). = pr-pr|nO int.)
ally;, =0
RC r—1)(c—1)|SS(v|a, /
r = bie—1)| S8t 5) (B = Lo = P — L)
Residual |n — rc TSS — SS(a, 3,7,)
Total n—1 TSS

» Certain authors prefer main-effects tests based upon SS(«|3) and
SS(B|a) (sometimes called “Type-ll sums of squares’) because, if
interactions are absent, tests based upon these sums of squares are
more powerful than those based upon SS(«a|3,~) and SS(S|a, ).
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» Other authors prefer SS(«|3,v) and SS(3|«,y) (sometimes called
“Type-llI’ sums of squares) because, in the presence of interactions,
tests based upon these sums of squares have a straight-forward (if
usually uninteresting) interpretation.

» | believe that either approach is reasonable. It is important to understand,
however, that while SS(«) and SS(/3) are useful as building blocks of
SS(«|f) and SS(f|«), it is in general inappropriate to use SS(«) and
SS(/3) to test hypotheses about the R and C' main effects: Each of these
sums of squares depends upon the other set of main effects (and the
interactions, if they are present).

e Consequently, the sequential (“Type-1") sums of squares SS(«),SS(5|«),
and SS(v|«, 3) do not provide an appropriate test for the R main ef-
fects.
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4.5 An Example: Moore and Krupat’s Conformity
Experiment

» For the Moore and Krupat conformity data, factor R is partner’s status
and factor C'is authoritarianism.

» Sums of squares for various models fit to the data are as follows:

SS(a, 8,v) = 391.44

SS(a, 5) = 215.95

SS(a,y) = 355.42

SS(,v) = 151.87

SS(a) = 204.33

SS(p) = 3.7333

TSS = 1209.2
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» The ANOVA for the experiment is shown in the following table:

Source SS df MS F D
Partner’s Status 1
alB,y 239.57 239.57 11.43 .002
alp 212.22 212.22 10.12 .003
Authoritarianism 2
Bla, v 36.02 18.01 0.86 .43
Bla 11.62 581 0.28 .76
Status x Authoritarianism 17549 2 87.74 4.18 .02
Residual 817.76 39 20.97
Total 1209.2 44

» A researcher would not normally report both sets of main-effect sums of
squares.
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5. Summary

» One-way analysis of variance examines the relationship between a
quantitative response variable and a categorical explanatory variable (or
factor).

» The one-way ANOVA model
Yij=p+a;+e;
is under-determined because it uses m + 1 parameters to model m
group means.
e The model can be solved, however, by placing a restriction on its
parameters.

e Setting one of the a;’s to 0 leads to dummy-regressor coding.
e Constraining the «;’s to sum to 0 leads to deviation-regressor coding.

e The two coding schemes are equivalent in that they provide the same
fit to the data, producing the same regression and residual sums of
squares.
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» The two-way analysis of variance model
Yije = pt o+ Bi+ v + €iji
incorporates main effects and interactions of two factors.
e The factors interact when the profiles of population cell means are not
parallel.

» The two-way ANOVA model is over-parameterized, but it may be fit to
data by placing suitable restrictions on its parameters.
e A convenient set of restrictions is provided by sigma constraints,
specifying that each set of parameters («;, 5, and v,,) sums to 0 over
each of its coordinates.

e Testing hypotheses about the sigma-constrained parameters is
equivalent to testing interaction-effect and main-effect hypotheses
about cell and marginal means.
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» There are two reasonable procedures for testing main-effect hypotheses
in two-way ANOVA:
e Tests based on SS(«|3, ) and SS(5|«, v) (Type-lll sums of squares)
employ models that violate the principle of marginality, but are valid
whether or not interactions are present.

e Tests based on SS(«|3) and SS(3|«) (Type-Il sums of squares)
conform to the principle of marginality, but are valid only if interactions
are absent.




