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I The method of maximum likelihood provides estimators that have both
a reasonable intuitive basis and many desirable statistical properties.

I The method is very broadly applicable and is simple to apply.

I Once a maximum-likelihood estimator is derived, the general theory
of maximum-likelihood estimation provides standard errors, statistical
tests, and other results useful for statistical inference.

I A disadvantage of the method is that it frequently requires strong
assumptions about the structure of the data.
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1. An Example
I We want to estimate the probability of getting a head upon flipping a

particular coin.
� We flip the coin ‘independently’ 10 times (i.e., we sample = 10 flips),

obtaining the following result: .
� The probability of obtaining this sequence — in advance of collecting

the data — is a function of the unknown parameter :
Pr(data|parameter) = Pr( | )

= (1 ) (1 )(1 )

= 7(1 )3

� But the data for our particular sample are fixed: We have already
collected them.

� The parameter also has a fixed value, but this value is unknown, and
so we can let it vary in our imagination between 0 and 1, treating the
probability of the observed data as a function of .
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� This function is called the likelihood function:
(parameter|data) = ( | )

= 7(1 )3

I The probability function and the likelihood function are given by the
same equation, but the probability function is a function of the data
with the value of the parameter fixed, while the likelihood function is a
function of the parameter with the data fixed.
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� Here are some representative values of the likelihood for different
values of :

( |data) = 7(1 )3

0.0 0.0
.1 .0000000729
.2 .00000655
.3 .0000750
.4 .000354
.5 .000977
.6 .00179
.7 .00222
.8 .00168
.9 .000478

1.0 0.0
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� The complete likelihood function is graphed in Figure 1.
� Although each value of ( |data) is a notional probability, the function
( |data) is not a probability or density function — it does not enclose

an area of 1.
� The probability of obtaining the sample of data that we have in hand,

, is small regardless of the true value of .
– This is usually the case: Any specific sample result — including the

one that is realized — will have low probability.
� Nevertheless, the likelihood contains useful information about the

unknown parameter .
� For example, cannot be 0 or 1, and is ‘unlikely’ to be close to 0 or 1.

I Reversing this reasoning, the value of that is most supported by the
data is the one for which the likelihood is largest.
� This value is the maximum-likelihood estimate (MLE), denoted b.
� Here, b = 7, which is the sample proportion of heads, 7/10.
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Figure 1. Likelihood of observing 7 heads and 3 tails in a particular se-
quence for different values of the probability of observing a head, .
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I More generally, for independent flips of the coin, producing a particular
sequence that includes heads and tails,

( |data) = Pr(data| ) = (1 )

� We want the value of that maximizes ( |data), which we often
abbreviate ( ).

� It is simpler — and equivalent — to find the value of that maximizes
the log of the likelihood

log ( ) = log + ( ) log (1 )

� Differentiating log ( ) with respect to produces
log ( )

= + ( )
1

1
( 1)

=
1
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� Setting the derivative to 0 and solving produces the MLE which, as
before, is the sample proportion .

� The maximum-likelihood estimator is b = .
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2. Properties of Maximum-Likelihood
Estimators
Under very broad conditions, maximum-likelihood estimators have the
following general properties:
I Maximum-likelihood estimators are consistent.

I They are asymptotically unbiased, although they may be biased in finite
samples.

I They are asymptotically efficient — no asymptotically unbiased estimator
has a smaller asymptotic variance.

I They are asymptotically normally distributed.

I If there is a sufficient statistic for a parameter, then the maximum-
likelihood estimator of the parameter is a function of a sufficient statistic.
� A sufficient statistic is a statistic that exhausts all of the information in

the sample about the parameter of interest.
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I The asymptotic sampling variance of the MLE b of a parameter can
be obtained from the second derivative of the log-likelihood:

V(b) = 1
2 log ( )

2

¸

� The denominator of V(b) is called the expected or Fisher information

I( )
2 log ( )

2

¸

� In practice, we substitute the MLE b into the equation for V(b) to
obtain an estimate of the asymptotic sampling variance, [V(b).

c°

Maximum-Likelihood Estimation: Basic Ideas 11

I (b) is the value of the likelihood function at the MLE b, while ( ) is
the likelihood for the true (but generally unknown) parameter .
� The log likelihood-ratio statistic

2 2 log
( )

(b) = 2[log (b) log ( )]

follows an asymptotic chisquare distribution with one degree of
freedom.
– Because, by definition, the MLE maximizes the likelihood for our

particular sample, the value of the likelihood at the true parameter
value is generally smaller than at the MLE b (unless, by good
fortune, b and happen to coincide).
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3. Statistical Inference: Wald,
Likelihood-Ratio, and Score Tests
These properties of maximum-likelihood estimators lead directly to three
common and general procedures for testing the statistical hypothesis
0: = 0.

1. Wald Test: Relying on the asymptotic normality of the MLE b, we
calculate the test statistic

0
b 0q
[V(b)

which is asymptotically distributed as (0 1) under 0.
2. Likelihood-Ratio Test: Employing the log likelihood ratio, the test statistic

2
0 2 log

( 0)

(b) = 2[log (b) log ( 0)]

is asymptotically distributed as 2
1 under 0.
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3. Score Test: The ‘score’ is the slope of the log-likelihood at a particular
value of , that is, ( ) log ( ) .
� At the MLE, the score is 0: (b) = 0. It can be shown that the score

statistic

0
( 0)p
I( 0)

is asymptotically distributed as (0 1) under 0.

I Unless the log-likelihood is quadratic, the three test statistics can
produce somewhat different results in specific samples, although the
three tests are asymptotically equivalent.

I In certain contexts, the score test has the practical advantage of not
requiring the computation of the MLE b (because 0 depends only on
the null value 0, which is specified in 0).

I The Wald and likelihood-ratio tests can be ‘turned around’ to produce
confidence intervals for .
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I Figure 2 compares the three test statistics.
I Maximum-likelihood estimation and the Wald, likelihood-ratio, and score

tests, extend straightforwardly to simultaneous estimation of several
parameters.
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Figure 2. Likelihood-ratio, Wald, and score tests.
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