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The Mathematical Derivation of Least Squares 
 

Back when the powers that be forced you to learn matrix algebra and calculus, I 
bet you all asked yourself the age-old question: “When the hell will I use this 
stuff?”  Well, at long last, that “when” is now!  Given the centrality of the linear 
regression model to research in the social and behavioral sciences, your decision to 
become a psychologist more or less ensures that you will regularly use a tool that is 
critically dependent on matrix algebra and differential calculus in order to do some 
quantitative heavy lifting.  
 
As you know, both bivariate and multiple OLS regression requires us to estimate 
values for a critical set of parameters: a regression constant and one regression 
coefficient for each independent variable in our model.  The regression constant 
tells us the predicted value of the dependent variable (DV, hereafter) when all of 
the independent variables (IVs, hereafter) equal 0.  The unstandardized regression 
coefficient for each IV tells us how much the predicted value of the DV would 
change with a one-unit increase in the IV, when all other IVs are at 0.   
 
OLS estimates these parameters by finding the values for the constant and 
coefficients that minimize the sum of the squared errors of prediction, i.e., the 
differences between a case’s actual score on the DV and the score we predict for 
them using actual scores on the IVs.  For both the bivariate and multiple regression 
cases, this handout will show how this is done – hopefully shedding light on the 
conceptual underpinnings of regression itself. 
 
 
The Bivariate Case 
 
For the case in which there is only one IV, the classical OLS regression model can 
be expressed as follows: 
 

iii exbby ++= 10      (1) 
 
where yi is case i’s score on the DV, xi is case i’s score on the IV, b0 is the 
regression constant, b1 is the regression coefficient for the effect of x, and ei is the 
error we make in predicting y from x. 
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Now, in running the regression model, what are trying to do is to minimize the sum 
of the squared errors of prediction – i.e., of the ei values – across all cases.  
Mathematically, this quantity can be expressed as: 
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Specifically, what we want to do is find the values of b0 and b1 that minimize the 
quantity in Equation 2 above.   
 
So, how do we do this?  The key is to think back to differential calculus and 
remember how one goes about finding the minimum value of a mathematical 
function.  This involves taking the derivative of that function.  As you may recall, 
if y is some mathematical function of variable x, the derivative of y with respect to 
x is the amount of change in y that occurs with a tiny change in x.1  Roughly, it’s 
the instantaneous rate of change in y with respect to changes in x. 
 
So, what does this have to do with the minimum of a mathematical function?  
Well, the derivative of function y with respect to x – the extent to which y changes 
with a tiny change in x – equals zero when y is at its minimum value.  If we find 
the value of x for which the derivative of y equals zero, then we have found the 
value of x for which y is neither increasing nor decreasing with respect to x.2  
 
Thus, if we want to find the values of b0 and b1 that minimize SSE, we need to 
express SSE in terms of b0 and b1, take the derivatives of SSE with respect to b0 
and b1, set these derivatives to zero, and solve for b0 and b1.   
 

                                                 
1 Formally, for the mathematically inclined, the derivative of y with respect to x – dy/dx – is 
defined as: 
 

       
x
y

dx
dy

x Δ
Δ

=
→Δ 0

lim  

 
In plain English, it’s the value that the change in y – Δy – relative to the change in x – Δx – 
converges on as the size of Δx approaches zero.  It is an instantaneous rate of change in y. 
2 Note that the value of x for which the derivative of y equals zero can also indicate a maximum. 
However, we can be sure that we have found a minimum if the second derivative of y with 
respect to x – i.e., the derivative of the derivative of y with respect to x – has a positive value at 
the value of x for which the derivative of y equals zero.  As we will see below, this is the case 
with regard to the derivatives of SSE with respect to the regression constant and coefficient. 
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However, since SSE is a function of two critical variables – b0 and b1 – we will 
need to take the partial derivatives of SSE with respect to b0 and b1.  In practice, 
this means we will need to take the derivative of SSE with regard to each of these 
critical variables one at a time, while treating the other critical variable as a 
constant (keeping in mind that the derivative of a constant always equals zero).  In 
effect, what this does is take the derivative of SSE with respect to one variable 
while holding the other constant.       
 
We begin by rearranging the basic OLS equation for the bivariate case so that we 
can express ei in terms of yi, xi, b0, and b1.  This gives us: 
 

iii xbbye 10 −−=      (3) 
 
Substituting this expression back into Equation (2), we get 
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where N = the sample size for the data.  It is this expression that we actually need 
to differentiate with respect to b0 and b1.  Let’s start by taking the partial derivative 
of SSE with respect to the regression constant, b0, i.e.,  
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In doing this, we can move the summation operator (Σ) out front, since the 
derivative of a sum is equal to the sum of the derivatives: 
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We then focus on differentiating the squared quantity in parentheses.  Since this 
quantity is a composite – we do the math in parentheses and then square the result 
– we need to use the chain rule in order to obtain the partial derivative of SSE with 
respect to the regression constant.3  In order to do this, we treat yi, b1, and xi as 
constants.  This gives us: 
                                                 
3 Use of the chain rule in this context is a two-step procedure. In the first step, we take the partial 
derivative of the quantity in parentheses with respect to b0.  Here, we treat yi, b1, and xi as 
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Further rearrangement gives us a final result of: 
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For the time being, let’s put this result aside and take the partial derivative of SSE 
with respect to the regression coefficient, b1, i.e., 
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Again, we can move the summation operator (Σ) out front: 
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We then differentiate the squared quantity in parentheses, again using the chain 
rule.  This time, however, we treat yi, b0, and xi as constants.  With some 
subsequent rearrangement, this gives us: 
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constants, meaning that the derivatives of first and last terms in this quantity equal zero.  In order 
to take the derivative of the middle term (-b0), we subtract one from the value of the exponent on 
-b0 (i.e., 1 – 1 = 0) and multiply this result by the exponent on -b0 (i.e., 1) from the original 
expression.  Since raising b0 to the power of zero gives us 1, the derivative for the quantity in 
parentheses is -1.  In the second step, we take the derivative of (yi – b0 – b1xi)2 with respect to (yi 
– b0 – b1xi).  We do this by subtracting one from the value of the exponent on the quantity in 
parentheses (i.e., 2 – 1 = 1) and multiply this result by the exponent on the quantity in 
parentheses (i.e., 2) from the original expression.  This gives us 2(yi – b0 – b1xi).  Multiplying this 
by the result from the first step, we get a final result of -2(yi – b0 – b1xi).    
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With that, we have our two partial derivatives of SSE – in Equations (5) and (6).4  
The next step is to set each one of them to zero: 
 

     ( )∑
=

−−−=
N

i
ii xbby

1
1020      (7) 

 

    ( )∑
=

−−−=
N

i
iii xbbyx

1
1020      (8) 

 
Equations (7) and (8) form a system of equations with two unknowns – our OLS 
estimates, b0 and b1.  The next step is to solve for these two unknowns.  We start 
by solving Equation (7) for b0.  First, we get rid of the -2 by multiplying each side 
of the equation by -1/2:    
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Next, we distribute the summation operator though all of the terms in the 
expression in parentheses: 
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Then, we add the middle summation term on the right to both sides of the equation, 
giving us: 
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Since b0 and b1 the same for all cases in the original OLS equation, this further 
simplifies to: 
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4 The second partial derivatives of SSE with respect to b0 and b1 are 2N and 2Nxi

2, respectively. 
Since both of these values are necessarily positive (i.e., because 2, N, and the square of xi will 
always be positive), we can be sure that the values of b0 and b1 that satisfy the equations 
generated by setting each partial derivative to zero refer to minimum rather than maximum 
values of SSE. 
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To isolate b0 on the left side of the equation, we then divide both sides by N: 
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Equation (9) will come in handy later on, so keep it in mind.  Right now, though, it 
is important to note that the first term on the right of Equation (9) is simply the 
mean of yi, while everything following b1 in the second term on the right is the 
mean of xi.  This simplifies the equation for b1 to the form from lecture: 
 

   xbyb 10 −=       (10) 
 
Now, we need to solve Equation (8) for b1.  Again, we get rid of the -2 by 
multiplying each side of the equation by -1/2:    
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Next, we distribute xi through all of the terms in parentheses: 
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We then distribute the summation operator through all of the terms in the 
expression in parentheses: 
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Next, we bring all of the constants in these terms (i.e., b0 and b1) out in front of the 
summation operators, as follows: 
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We then add the last term on the right side of the equation to both sides: 
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Next, we go back to the value for b0 from Equation (9) and substitute it into the 
result we just obtained.  This gives us: 
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Multiplying out the last term on the right, we get: 
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If we then add the last term on the right to both sides of the equation, we get: 
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On the left side of the equation, we can then factor out b1: 
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Finally, if we divide both sides of the equation by the quantity in the large brackets 
on the left side, we can isolate b1 and obtain the least-square estimator for the 
regression coefficient in the bivariate case.  This is the form from lecture: 
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The expression on the right, as you will recall, is the ratio of the sum of the cross-
products of xi and yi over the sum of squares for xi. 
 

   
The Multiple Regression Case: Deriving OLS with Matrices 
 
The foregoing math is all well and good if you have only one independent variable 
in your analysis.  However, in the social sciences, this will rarely be the case: 
rather, we will usually be trying to predict a dependent variable using scores from 
several independent variables.  Deriving a more general form of the least-squares 
estimator for situations like this requires the use of matrix operations.  As you will 
recall from lecture, the basic OLS regression equation can be represented in the 
following matrix form: 
 

     eXBY +=      (12) 
 
where Y is an N×1 column matrix of cases’ scores on the DV, X is an N×(k+1) 
matrix of cases’ scores on the IVs (where the first column is a placeholder column 
of ones for the constant and the remaining columns correspond to each IV), B is a 
(k+1)×1 column matrix containing the regression constant and coefficients, and e 
is an N×1 column matrix of cases’ errors of prediction. 
 
As before, what we want to do is find the values for the elements of B that 
minimize the sum of the squared errors.  The quantity that we are trying to 
minimize can be expressed as follows: 
 

     ee′=SSE       (13) 
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If you work out the matrix operations for the expression on the right, you’ll notice 
that the result is a scalar – a single number consisting of the sum of the squared 
errors of prediction (i.e., multiplying a 1×N matrix by a N×1 matrix produces a 
1×1 matrix, i.e., a scalar).  In order to take the derivative of the quantity with 
regard to the B matrix, we first of all need to express e in terms of Y, X, and B: 
 

     XBYe −=       
 
Substituting the expression on the right side into Equation (13), we get: 
 

     ( ) ( )XBYXBY −′−=SSE      
 
Next, the transposition operator on the first quantity in this product – (Y - XB)′ – 
can distributed:5 
 

    ( )( )XBYXBY −′′−′=SSE  
 
When this product is computed, we get the following: 
 

        XBXBYXBXBYYY ′′+′′−′−′=SSE  
 
Now, if multiplied out, the two middle terms – Y′XB and B′X′Y -- are identical: 
they produce the same scalar value.  As such, the equation can be further 
simplified to: 
 

 XBXBXBYYY ′′+′−′= 2SSE     (14) 
 
We now have an equation which expresses SSE in terms of Y, X, and B.  The next 
step – as in the bivariate case – is to take the derivative of SSE with respect to the 
matrix B.  Since we’re really dealing with a set of variables in this differentiation 
problem – the constant and one regression coefficient for each IV – we again use 
the partial derivative operator: 
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5 Remember that for any two matrices A and B that can be multiplied together, (AB)′ = B′A′. 
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This looks like a complex problem, but it’s actually quite similar to taking the 
derivative of a polynomial in the scalar context.  First, since we are treating all 
matrices besides B as the equivalent of constants, the first term in parentheses – 
based completely on the Y matrix – has a derivative of zero.   
 
Second, the middle term – known as a “linear form” in B – is the equivalent of a 
scalar term in which the variable we are differentiating with respect to is raised to 
the first power (i.e. a linear term), which means we obtain the derivative by 
dropping the B and taking the transpose of all the matrices in the expression which 
remain, giving us -2X′Y.  
 
Finally, the third term – known as a “quadratic form” in B – is the equivalent of a 
scalar term in which the variable we are differentiating with respect to is raised to 
the second power (i.e., a quadratic term).  This means we obtain the derivative by 
dropping the B′ from the term and multiplying by two, giving us 2X′XB.  Thus, the 
full partial derivative is 
 

XBXYX
B

′+′−=
∂
∂ 22SSE      (15) 

 
The next step is to set this partial derivative to zero and solve for the matrix B. 
This will give us an expression for the matrix of estimates that minimize the sum 
of the squared errors of prediction.  We start with the following: 
 

   XBXYX ′+′−= 220  
 
We then subtract 2X′XB from each side of the equation: 
 

     YXXBX ′−=′− 22  
 
Next, we eliminate the -2 on each term by multiplying each side of the equation by 
-1/2: 
 

         YXXBX ′=′  
 
Finally, we need to solve for B by pre-multiplying each side of the equation the 
inverse of (X′X), i.e., (X′X)-1.  Remember that this is the matrix equivalent of 
dividing each side of the equation by (X′X): 
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       ( ) YXXXB ′′= −1         (16) 
 
Equation (16) is, of course, the familiar OLS estimator we discussed in lecture. To 
tie this back to the bivariate case, note closely what the expression on the right 
does.  While X′Y gives the sum of the cross-products of X and Y, X′X gives us the 
sum of squares for X. Since pre-multiplying X′Y by (X′X)-1 is the matrix 
equivalent of dividing X′Y by X′X, this expression is basically doing the same 
thing as the scalar expression for b1 in Equation (11): dividing the sum of the cross 
products of the IV (or IVs) and the DV by the sum of squares for the IV (or IVs). 


