IMPERFECT INFORMATION (SUB-GAME PERFECT BAYESIAN EQUILIBRIUM)

Perfect vs imperfect information

Perfect information

- When making a move, a player has perfectly observed all previously actions chosen.
 - For each decision, they know exactly where they are in the tree.

Imperfect information

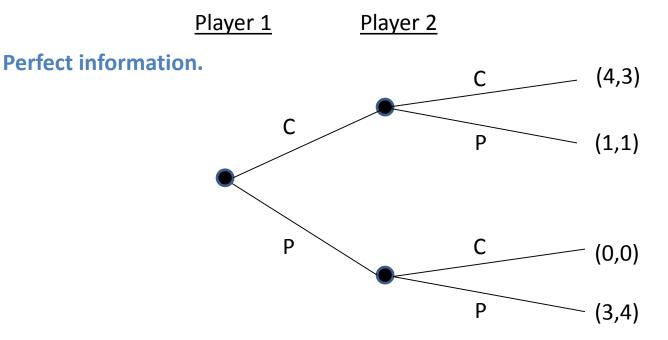
- When making a move, a player may not know all previous actions chosen.
 - For at least one decision, they don't know where they are in the tree.

Information sets

- A collection of histories that a player cannot distinguish when it is her turn to move.
 - Information sets can contain multiple histories or one history.
 - If multiple histories, then you have imperfect information.

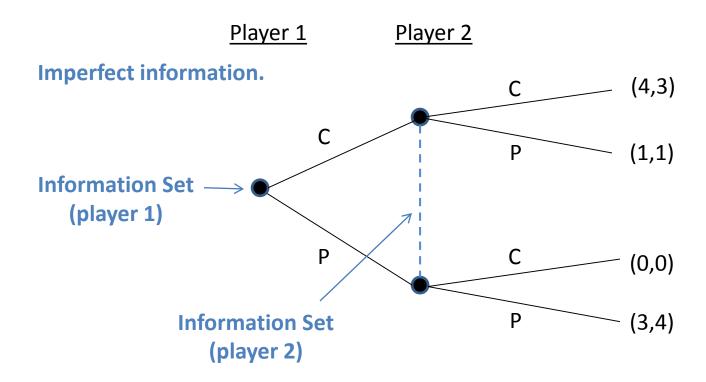
EX: Battle of the Sexes

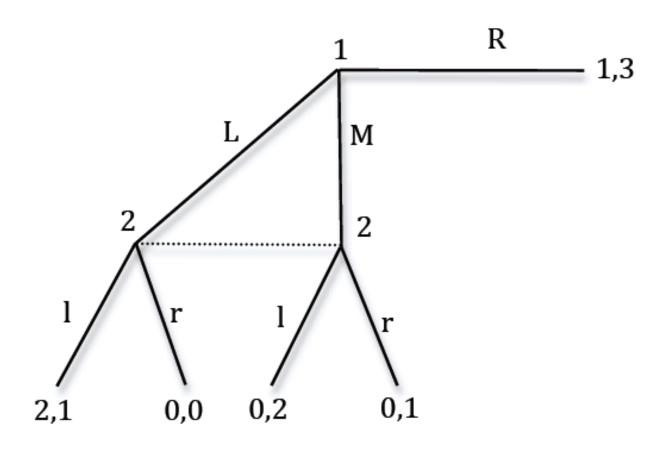
Two PhD students, using a dating service, decide whether to meet in a pub or a café. They just forgot where to meet.



EX: Battle of the Sexes 2

Two PhD students, using a dating service, decide whether to meet in a pub or a café. They just forgot where to meet.





Strategies

 A strategy in an extensive form game with imperfect information must specify the action that each player will take at each of the player's information sets.

Subgames

- Sub-games cannot "cut" information sets (i.e., information sets cannot be divided).
 - Hence, for many extensive form games, the entire game is the only subgame, reducing SPE to simple Nash equilibrium.

Recovering Subgame-Perfect equilibrium

 To recover the spirit of the subgame-perfect refinement, we would like to ensure that players act optimally at all of their information sets.

Sequential Equilibrium (S.E.)

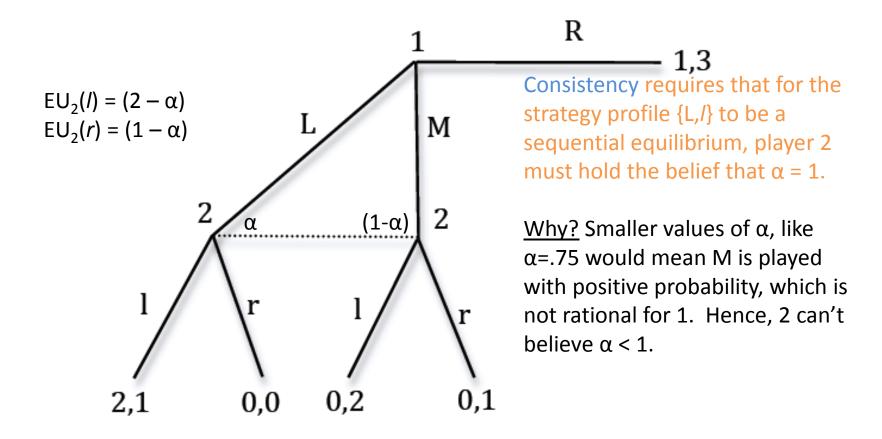
Sequential Equilibrium is our first attempt at doing this.
 Loosely, a sequential equilibrium is a Nash Equilibrium that maintains consistent beliefs and is sequentially rational.

Beliefs

 At every information set, a player must hold a belief about which history has occurred. A belief is represented by a probability distribution over the histories in the information set.

Consistent Beliefs

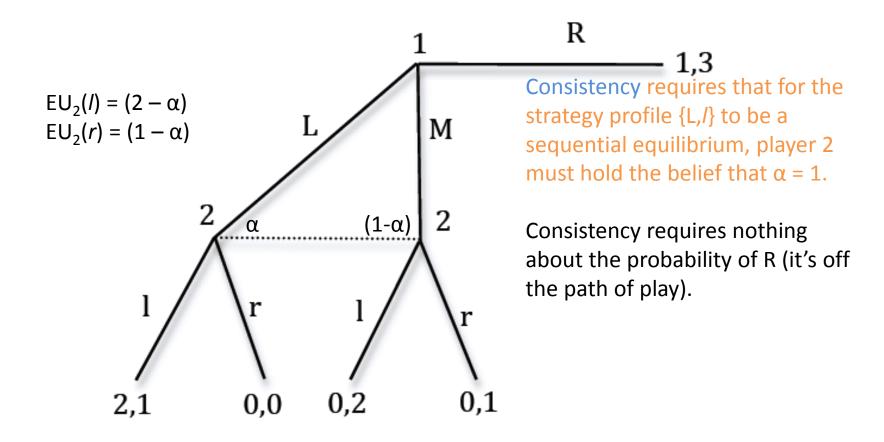
 Along the path of play, each player's "beliefs" at her information sets must be consistent with the strategy profile being played.



S.E. = {L;
$$(1 \mid \alpha = 1)$$
}

Beliefs Off the Path

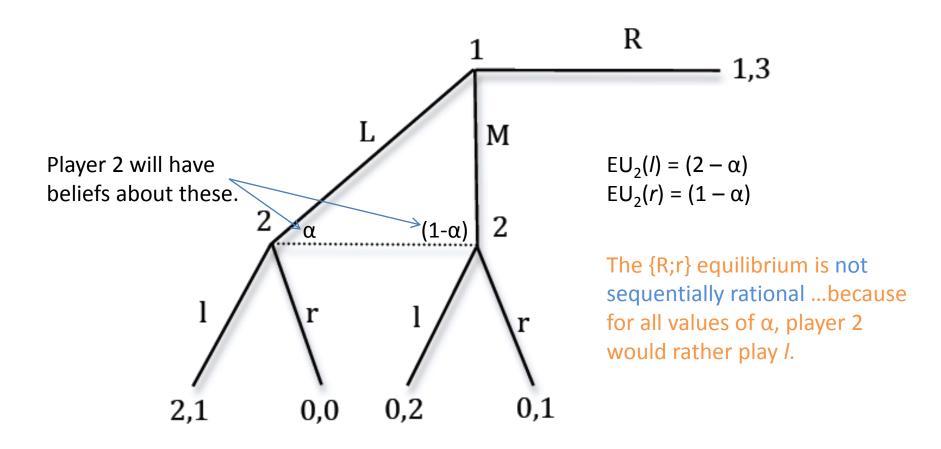
- At information sets that are off the path of play, i.e. not reached with positive probability, consistency imposes no restrictions on the beliefs a player may hold. Therefore, the player may hold any beliefs.
 - This allows analysts to construct whatever beliefs are useful off the path of play.

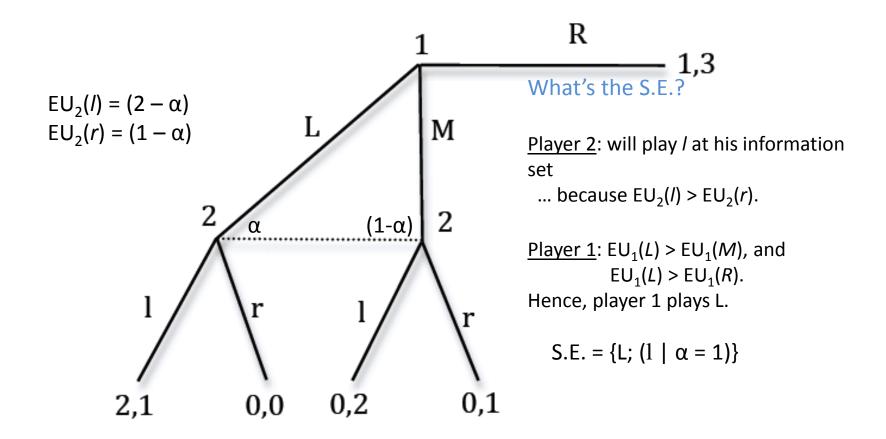


S.E. = {L;
$$(1 \mid \alpha = 1)$$
}

Sequential Rationality

 At every information set, the player must "act" optimally in light of her beliefs and the other player's strategies.





Practice: Battle of the Sexes 2

Two PhD students, using a dating service, decide whether to meet in a pub or a café. They just forgot where to meet.

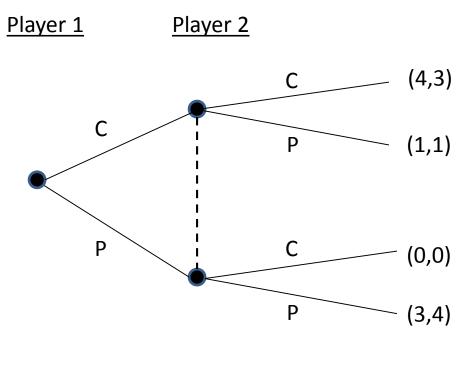
What are the pure strategy S.E.?

Hint:

1- consider a reasonable strategy profile for both plays

2- make beliefs consistent with that strategy profile.

3- evaluate whether it would be rational for either player to change strategies or beliefs.



Incomplete Information

Imperfect information (what we've been talking about)

- Players are uncertain about at least part of the history of play.
- Modeled using information sets.

Incomplete information

- Players may not know all the details of the game they are playing (e.g., the order of moves, the preferences of the other players, ect.).
- We are mostly interested in cases where at least one player does not know the other player(s) preferences a type of incomplete information.

Incomplete information about player(s) preferences are modeled as if they are games of imperfect information.

- Before the game is played, Nature randomly determines the players' preferences (from all possible sets of preferences).
- Players know the probability distribution that Nature uses, which is common knowledge.

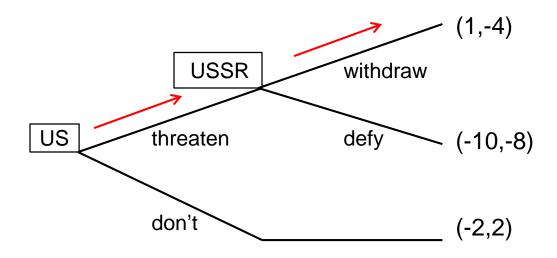
Incomplete Information

Player Types

- A player type is a set of preferences for a player.
 - All possible types for player i are called player i's type space.
- Players know their own types (i.e. they know their own preferences) but they are uncertain about the other player(s) type (i.e. the other player's preferences).
- Nevertheless, there is a probability distribution on the other player's types that is common knowledge.

Two Simple Games (complete information)

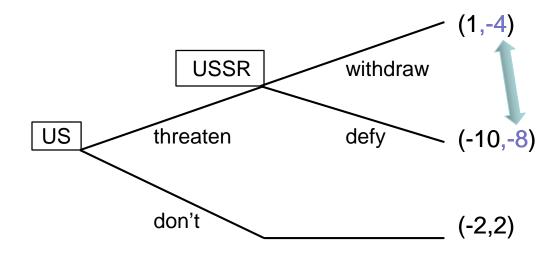
1. Soviet Softies



What's the S.P.E.? S.P.E.= {threaten; withdraw}

Two Simple Games (complete information)

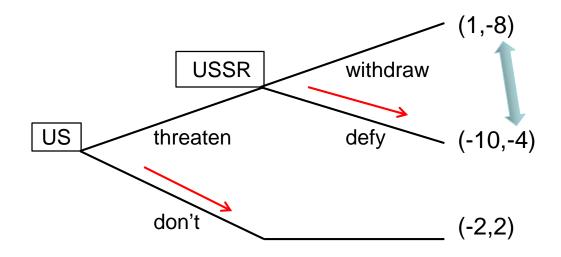
2. Soviet Hardliners



Same game, but a different set of preferences (at least for the USSR).

Two Simple Games (complete information)

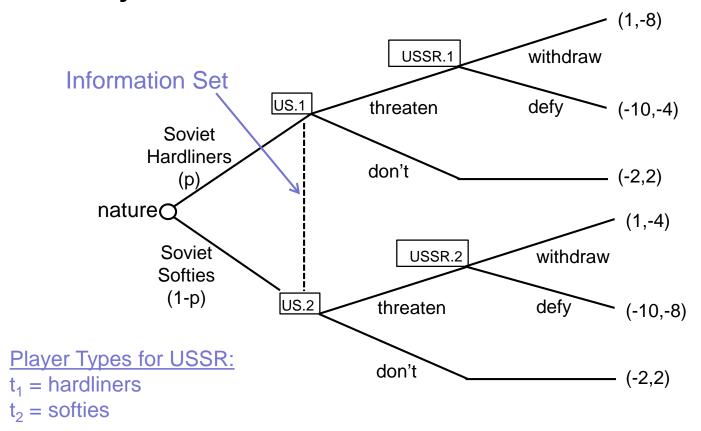
2. Soviet Hardliners



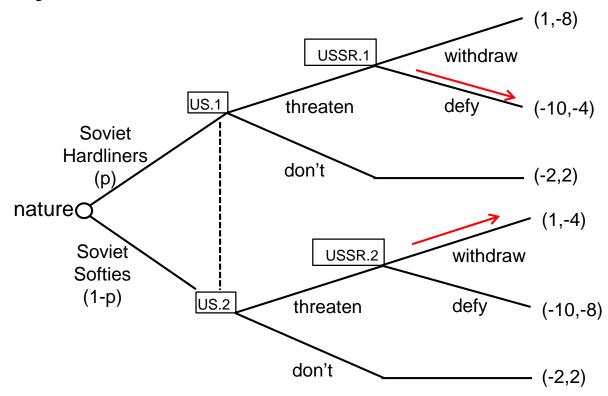
Same game, but a different set of preferences (at least for the USSR).

What's the S.P.E.? S.P.E.= {don't; defy}

C. Incomplete Information: Unknown Soviet Payoffs



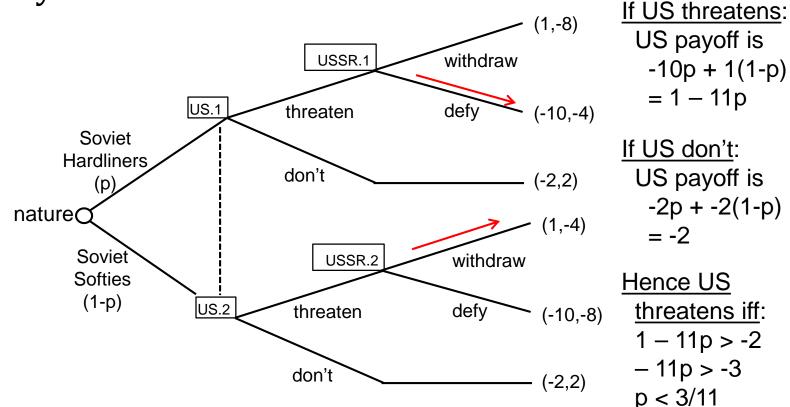
C. Incomplete Information: Unknown Soviet Payoffs



What's the S.E.?

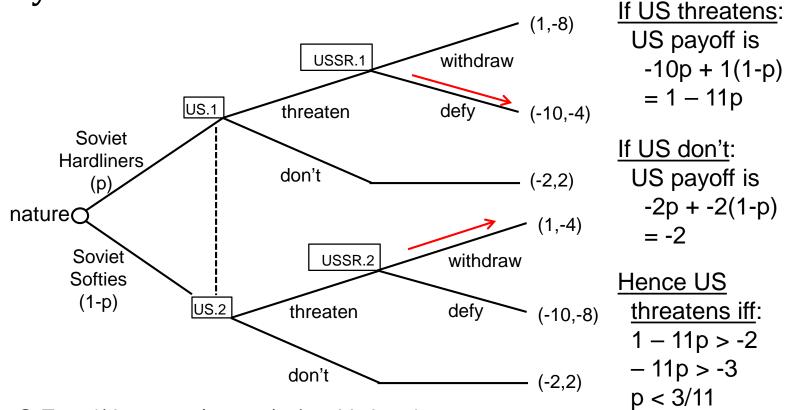
...but the US doesn't know the Soviet type, so it must make a calculation.

C. Incomplete Information: Unknown Soviet Payoffs



The US threatens if the probability that the soviets are hardliners is small (prob. less than 3/11).

C. Incomplete Information: Unknown Soviet Payoffs



S.E. = {(threaten | p < 3/11); withdraw}. = {(don't | p > 3/11); defy}.

Subgame Perfect Bayesian Equilibrium (PBE)

- PBE requires weakly consistent beliefs
 - Imposes the additional restriction that beliefs must be consistent with Bayes' Rule where ever possible (on the path-of-play).
 - This allows players to update their beliefs about another player's type conditional upon arriving at one of their information sets.
- PBE is very similar to Sequential Equilibrium.
 - If each player has at most two types or there are at most two periods of play, PBE and SE will be identical.
 - See Fudenberg and Tirole, 1993, pp. 345-350, for a more complete comparison.

Formal Apparatus

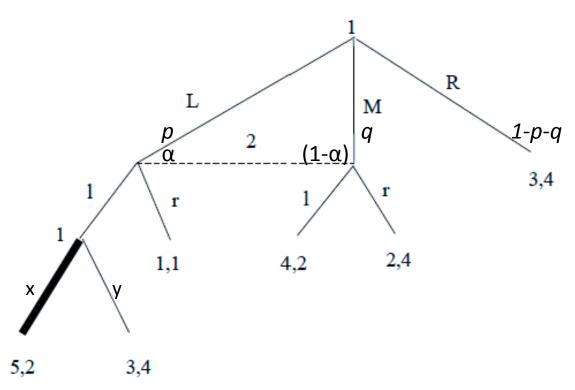
Weak Consistency Requirement

- The consistency requirement demands that along the path of play, player's beliefs are derived from the strategy profile in conjunction with Bayes' rule.
- For any information set I_k that is reached with positive probability, let h^* be a history that is party of I_k , and β the profile of behavioral strategies. Then the player's belief that h^* has occurred is given by

$$Pr(h^*|I_k) = \frac{Pr(h^*|\beta)}{\sum_{h \in I_k} Pr(h|\beta)}.$$

This formula comes from a straight forward application of Bayes Rule:

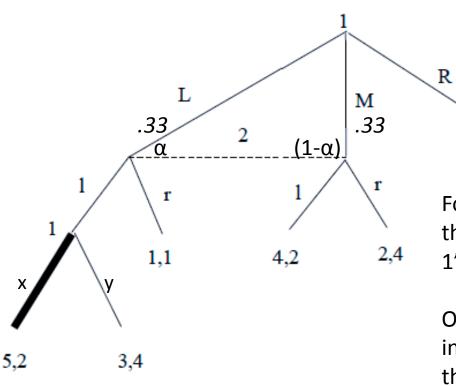
New Example



Suppose player 1 moves L with probability p, M with probability q, and R with probability (1-p-q). Then 2's beliefs at his information set must be given by:

$$Pr(h=L)=\alpha=rac{p}{p+q}$$
 This is Bayesian $Pr(h=M)=1-\alpha=rac{q}{p+q}$ updating.

New Example



For example: Suppose 2 initially thought the probability of each of 1's actions were (.33,.33,.33).

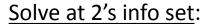
.33

3,4

Once the game was at 2's information set, he would update the probability of L to .5 = .33/(.33+.33), and the probability of M to .5 = .33/(.33+.33).

Bayesian updating allows us to correct beliefs given information from the play of the game.

New Example



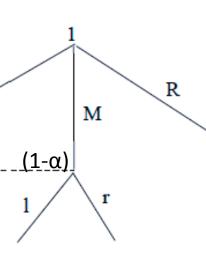
(unnecessary, but let's do it)

$$\mathsf{EU}_2(I)=2,$$

$$EU_2(r) = 4-3\alpha$$
.

Hence, $EU_2(I) > EU_2(r)$ iff

 $\alpha > 2/3$.



Pure Strategy

SE = PBE =
$$\{(L,x); / | \alpha = 1\}.$$

SE = PBE =
$$\{(R,x)\}$$
; $r \mid \alpha = 0\}$.
See why?

3,4

This example does not demonstrate Bayes Rule very well.

Player 1 (possible strategies):

5,2

r

1,1

3,4

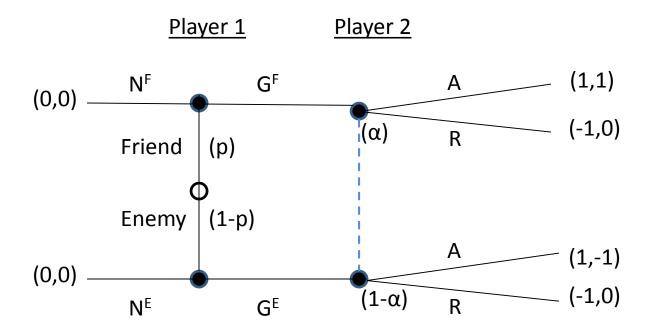
(L, x), then a consistent belief is α = 1, which would make 2 play I. Payoff (5,2). No rational deviation for player 1 (or 2). ... The beliefs are consistent, because $Pr(h=L)=\alpha=1$ and $\frac{p}{p+q}=1$.

(M, x), then a consistent belief is $\alpha = 0$, which would make 2 play r. Payoff (2,4). But player 1 prefers deviating to R, so this is not an equilibrium.

EX: The Gift Game

- Nature determines player 1's type: friend (with probability p) or enemy (with probability 1-p). Player 1 knows her type.
- Player 1 then decides to give a gift to player 2 (which is wrapped). Friends give desirable objects, like cake and CDs, while enemies give undesirable objects like rocks and frogs.
- If player 1 chooses to not give a gift (N), the game ends.
- If player 1 chooses to give a gift (G), then player 2 decides whether to accept (A) or reject (R) the gift.
- Player 2 does not observe player 1's type directly.

EX: The Gift Game



Note: N^F means the strategy "not give a gift" conditional upon being type "friend."

Conditional Beliefs About Types

- Probability p represent's player 2's initial belief about player 1's type.
- But player 2 might learn something about player 1's type through 1's action. As a result player 2 would have an updated belief about player 1's type.
 - Ex: if player 2 knew that player 1 plays (N^F, G^E) ... perhaps because it was the only rational move for player 1... then if player 2 received a gift, he would conclude that 1 must be an enemy.
- In general, player 2 has an updated belief about player 1's type, conditional upon arriving at player 2's information set.
 - In the figure, α is player 2's probabilistic belief that he is at the top node when his information set is reached (i.e. when he has received a gift).
 - (1- α) is player 2's probabilistic belief he is at the bottom node when his information set is reached.

Conditional Beliefs About Types

- Conditional beliefs allow us to evaluate rational behavior at all information sets, even those that may not be reached in equilibrium.
 - Suppose player 1 plays N^F , N^E (neither type gives a gift) and player 2 knows it. In this case α represents player 2's belief about player 1's type off the equilibrium path (not type and play).

EX: The Gift Game

What is the PBE? Player 1 Player 2 $(0,0) \xrightarrow{\mathsf{N}^\mathsf{F}} \mathsf{G}^\mathsf{F} \xrightarrow{\mathsf{A}} (1,1)$ Friend (p) $\mathsf{Enemy} (1-\mathsf{p})$ $\mathsf{R} = \mathsf{G}^\mathsf{E} = \mathsf{G}^\mathsf{E} = \mathsf{R} =$

The following prep work will be useful in finding the PBE:

$$EU_2(A) = \alpha + (-1)(1 - \alpha)$$

 $EU_2(R) = 0.$

At his information set, player 2 selects A iff $EU_2(A) > EU_2(R)$

$$2\alpha - 1 > 0$$

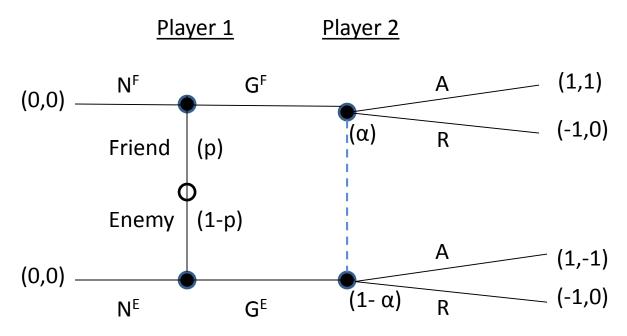
 $\alpha > \frac{1}{2}$

He will select R if $\alpha < \frac{1}{2}$.

Perfect Bayesian Equilibrium

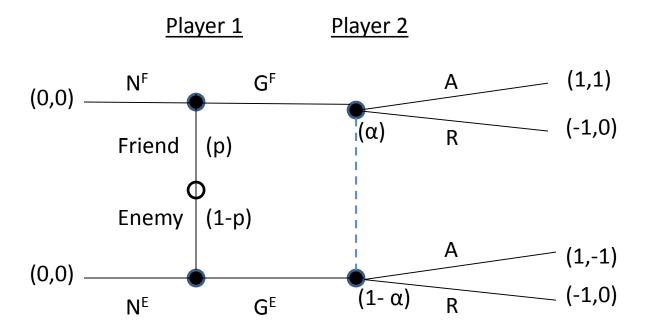
- With uncertainty about player types, two types of PBE:
 - An equilibrium is separating if the types of a player behave differently.
 - An equilibrium is pooling if the types behave the same.
 - An equilibrium is semi-pooling/semi-separating if you get a bit of both.
- To determine the set of pure strategy PBE for the game:
 - 1. Start with a strategy for player 1 (separating or pooling).
 - 2. If possible, calculate α by Bayes rule.
 - If you can't use Bayes rule, arbitrarily select α and check whether its value against the next steps of the procedure.
 - 3. Given α , calculate player 2's optimal action.
 - 4. Check whether player 1's strategy is a best response to player 2's strategy. If so, you have a BPE.

Step 2: $\alpha = Prob[F|G] = \frac{Prob[G|F]Prob[F]}{Prob[G]}$ **EX: The Gift Game, PBE** $= \frac{(0)p}{Prob[G]}$



Separating with N^FG^E: Given this strategy for player 1, it must be that $\alpha = 0$ (step 2). Thus, player 2's optimal strategy is R (step 3). But then player 1 would strictly prefer not to play G^E when of the enemy type (step 4). Therefore, there is no PBE in which N^FG^E is played.

EX: The Gift Game, PBE

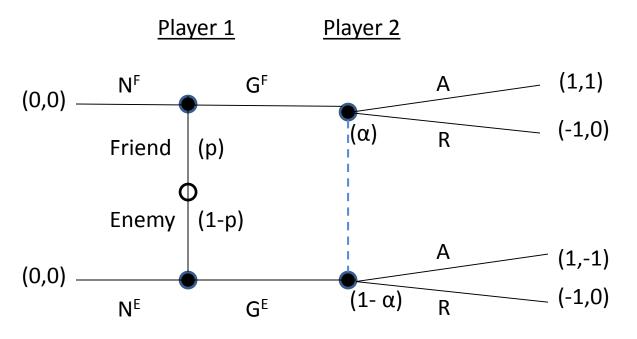


Separating with G^FN^E : Given this strategy for player 1, it must be that $\alpha = 1$ (step 2). Thus, player 2's optimal strategy is A (step 3). But then the enemy type of player 1 would strictly prefer to play G^E rather than N^E (step 4). Therefore, there is no PBE in which G^FN^E is played.

Step 2:

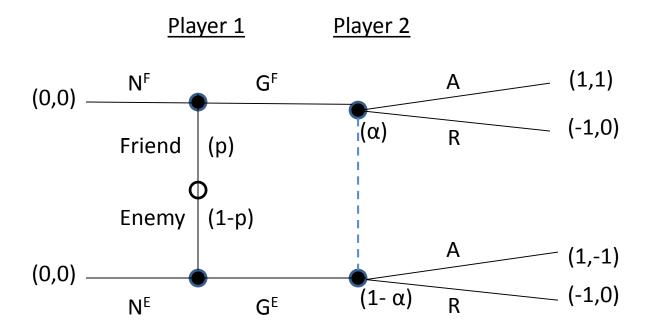
$$\alpha = Prob[F|G] = \frac{Prob[G|F]Prob[F]}{Prob[G]}$$

EX: The Gift Game, PBE = $\frac{(1)p}{1} = p$



Pooling with G^FG^E : Here, Bayes' rule requires $\alpha = p$, so player 2 optimally selects A if and only if $p \ge \frac{1}{2}$ (remember prep work). In the event that $p < \frac{1}{2}$, player 2 must select R, in which case neither type of player 1 wishes to play G in the first place. Thus, there is no PBE of this type when $p < \frac{1}{2}$. When $p \ge \frac{1}{2}$ there is a PBE in which $\alpha = p$ and $\{G^FG^E; A\}$ is played.

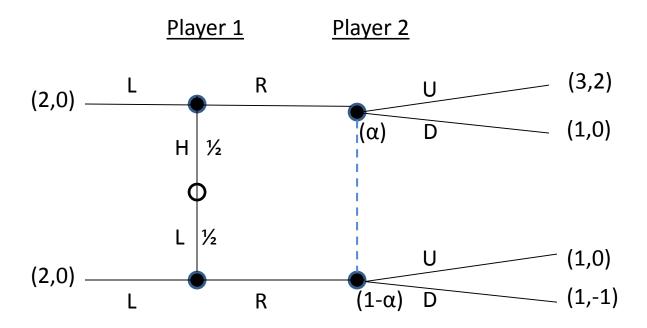
EX: The Gift Game, PBE



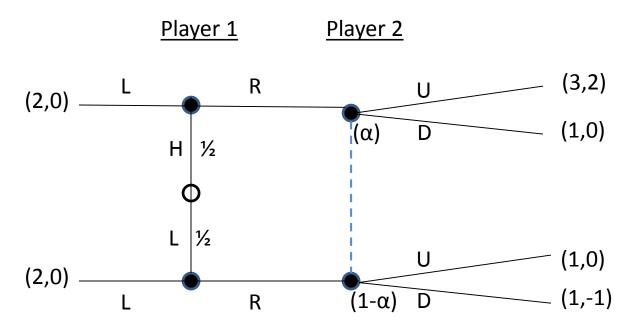
Pooling with N^FN^E: Bayes' rule does not determine α . But notice that both types of player 1 will continue not giving gifts only if player 2 selects R. Strategy R is optimal as long as $\alpha \le \frac{1}{2}$. Thus, for every $\alpha \le \frac{1}{2}$, there is a PBE in which player 2's belief is α and the strategy profile {N^FN^E; R} is played.

Summary of the Gift Game

- Because both types of player 1 have the same preferences over the outcomes, there is no separating equilibrium.
- There is always a pooling equilibrium in which no gifts are given because player 2 believes receiving a gift signals an enemy.
- If there is a great enough chance of encountering a friend (p ≥ ½), then there is a pooling equilibrium in which gifts are given by both types. In this equilibrium a sanguine player 2 gladly accepts the gift.

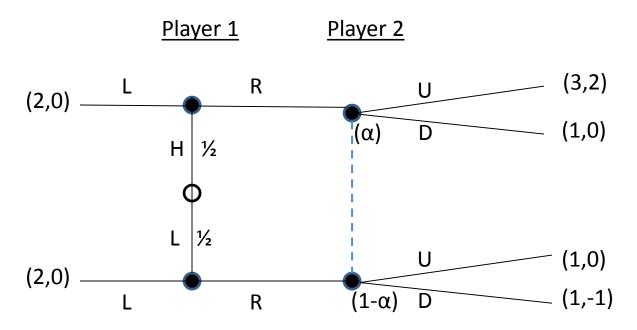


- 1. Does this game have a *separating* perfect Bayesian equilibrium? If so, fully describe it.
- 2. Does this game have a *pooling* perfect Bayesian equilibrium? If so, fully describe it.



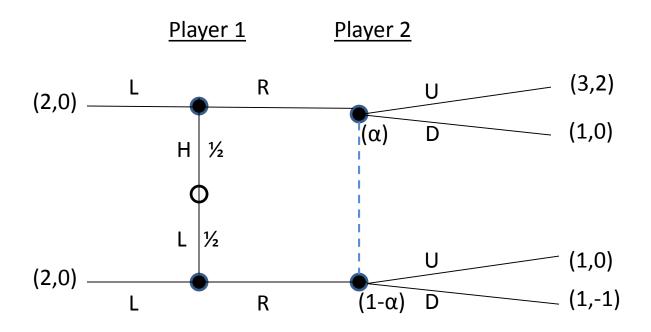
Separating with L^HR^L: given this strategy for player 1, it must be that $\alpha = 0$. Thus, player 2's optimal strategy is U. But then player 1 would strictly prefer L^L to R^L. Therefore, there is no PBE in which L^HR^L is played.

Separating with R^HL^L: given this strategy for player 1, it must be that $\alpha = 1$. Thus, player 2's optimal strategy is U. Because the high type of player 1 cannot gain from deviating to L^H (giving her 2 rather than 3) and the low type cannot gain from deviating to R^L(giving her 1 rather than 2), (R^HL^L, U) and $\alpha = 1$ is a PBE.



Pooling with L^HL^L: Bayes' rule does not determine α. But notice that player 1 will prefer to deviate to R^HL^L if player 2 plays U. Further notice that player 2 always prefers U to D. Hence, the deviation is rational and there is not a PBE in which L^HL^L is played.

Pooling with R^HR^L: Bayes' rule requires $\alpha = \frac{1}{2}$. However, it is rational for player 1 to deviate to R^HL^L, because 2>1, so there is not a PBE in which R^HR^L is played.

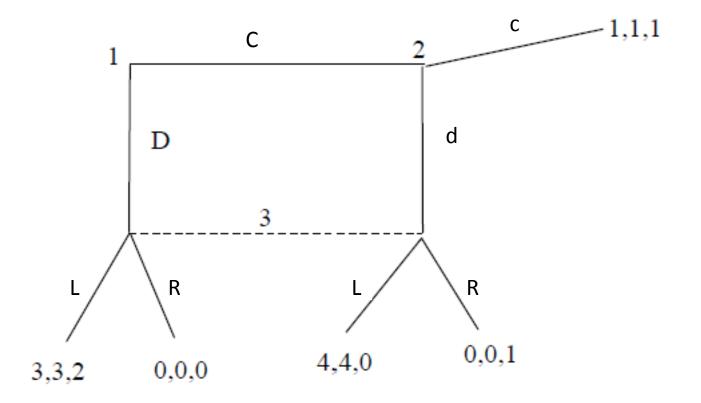


Remarks: There are no pooling equilibria. There is only a separating equilibria where player 1 plays right if the high type and left if the low type, while player 2 plays up.

This is partly due to the fact that player 2 always prefers U to D, which player 1 takes advantage of by having each of her types play differently.

Reinhard Selten

Reinhard Selten's Horse



Extra Credit Game (HW 5)

- Because this stuff is so bloody hard, I'm going to give 5 extra credit points on HW5 to everyone who showed up today.
 - Note to self: pass attendance sheet.