MAY'S THEOREM

Partial Notes

Four Democratic Principles

1. Decisiveness

 The voting rule must specify a unique decision (even if the decision is indifference) for any set of individual preferences.

2. Anonymity

- A voting rule must treat all *voters* alike, in the sense that if any two voters traded ballots, the outcome of the election would remain the same.
- Ex: if Abdullah Abdullah won with Asa voting for him and Ara voting against, then Abdullah Abdullah should win if Ara voted for him and Asa voted against him.

3. Neutrality

- A voting rule must treat all *candidates* alike, rather than favor one over the other.
- Ex: if the names Abdullah and Karzai are switched on the ballot but the votes remain the same, then the result should be the same (but favor of the other candidate).

4. Positive Responsiveness (monotonicity)

- if the group decision is indifference or favorable to x, and if individual preferences remain the same except that a single individual changes his/her vote in favor of x, then the group decision should be x (rather than y or remain indifferent).
- Ex: If Abdullah wins or ties, then he should win if he gains votes without losing votes.

May's Theorem

• Theorem: assume a two candidate election with an odd number of voters. Majority rule adheres to these four conditions. Furthermore, these four conditions imply majority rule.

<u>Proof</u>:

Let the majority rule decision function D be represented by the sum of N(1), N(0), and N(-1), where MR is decisive becaus

N(1) is the number of votes for x, N(-1) is the number of votes for y, and N(0) is the number of indifferent voters. Under simple majority rule (MR)

If D=0, then the social decision is indifference. If D>0, then the social decision is +1 (for x). If D<0, then the social decision is -1 (for y).

MR is decisive because it always produces an outcome of +1, 0 or -1.

MR adheres to anonymity because swapping a +1 and -1 among two voters does not affect the sum. Hence the result is unchanged. 6

May's Theorem

<u>Proof</u>:

That these four conditions imply MR is a little harder to see...

Suppose N(-1)=N(1), then it follows from the first three conditions that D=0. Here's why...

Consider the following seven voters:

(A, A, A, O, K, K, K).

If A were to win, then swapping all the As and Ks would either produce the reverse result:

 $f(K, K, K, 0, A, A, A) \rightarrow K$

which violates anonymity because who votes for A and K would determine the result.

Or it would produce the same result:

 $f(K, K, K, 0, A, A, A) \rightarrow A$

which violates neutrality because A is favored despite N(K)=N(A).

If K were to win, then we have the same problem in reverse.

Hence, N(-1)=N(1) must imply D=0.

May's Theorem

Proof:

Furthermore, if N(1)=N(-1)+1

i.e., (A, A, A, O, O, K, K).

then the social decision function must favor A according to positive responsiveness.

Also if N(1) = N(-1) + (m-1) for any 1 < m < N(-1)+1,

i.e., (A, A, A, A, O, A, K, K), (A, A, A, O, A, O, K).... (A, A, A, A, A, A, A, A)

then in all these cases the social decision function must favor A according to positive responsiveness.

The voting rule that asserts indifference when N(1)=N(-1) and favors 1 in all the cases mentioned above is simple majority rule.