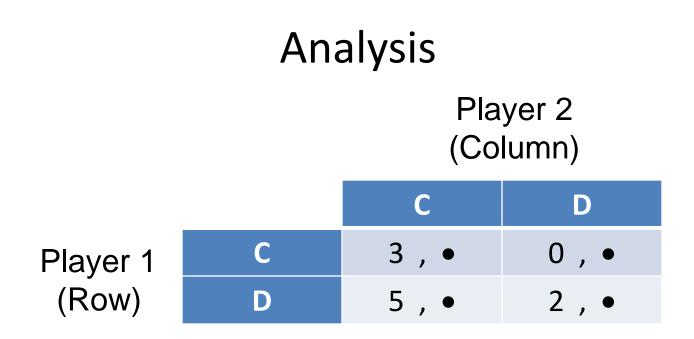
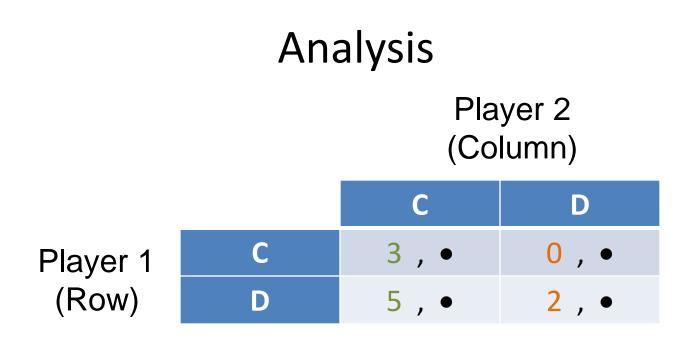

NORMAL FORM (SIMULTANEOUS MOVE) GAMES

1


For These Games

- Choices are simultaneous made *independently* and without observing the other players' actions
- Players have complete information, which means they know the structure of the game, actions, and preferences (both their own and the other players).
- Such information is *common knowledge* (all players know that all players know this)

Prisoners' Dilemma



How would you play? I need a volunteer.

How a Rational Actor Would Play:

For each of Column's actions, what is Row's rational choice?

How a Rational Actor Would Play:

For each of Column's actions, what is Row's rational choice? Note:

5 > 3 and 2 > 0. So folks have argue that D is better than C no matter what the other player chooses.

Same for player 2.

Summary: Prisoner's Dilemma Column

- D is a **dominant strategy** for each player (it is best regardless of what the other player chooses)
- Individually rational behavior predicts the outcome (D, D).
- Yet (C, C) is Pareto superior to (D, D)
 - In a sense, (D, D) might be considered individually rational but collectively irrational.

Strict dominance

For player 1, strategy s *strictly dominates* strategy t if $u_1(s,a_{-i}) > u_1(t,a_{-i})$ for all a_{-i} ... where a_{-i} is all the actions of the other player

	W	X	У	Z
S	2, ·	4, ·	0, ·	-1, ·
t	0, ·	2, ·	-2, ·	-4, ·

Equivalently, strategy t is strictly dominated by strategy s.

Strict dominance

Strategy s is a *strictly dominant* strategy for player 1 if $u_1(s,a_{-i}) > u_1(t,a_{-i}), u_1(s,a_{-i}) > u_1(r,a_{-i}), ...$ for all of 1's possible actions, t, r, etc. and for all a_{-i}

	W	X	У	Z
S	2, ·	4, •	0, ·	-1, ·
t	0, ·	2, ·	-2, ·	-4, ·
r	1, ·	3, •	-1, •	-2, ·

Equivalently, s is strictly dominant if it strictly dominates all other strategies

Strict dominance

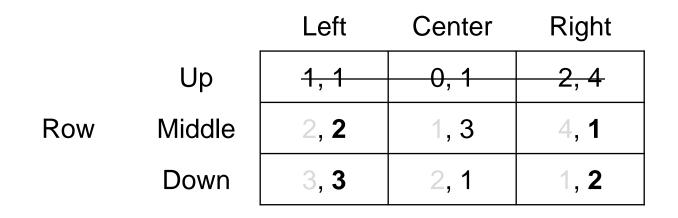
- Strictly dominant strategy \Rightarrow always a best response
- Strictly dominated strategy \Rightarrow never a best response
- Alternative solution concept: iterated dominance
 - Iterated elimination of strictly dominated strategies
 - I will refer to the outcomes that remain after an iterated elimination of strictly dominated strategies as a strictly dominant strategy equilibria (SDSE).
 - Game is "dominance solvable" if the SDSE is unique
 - Nash equilibria, coming soon, are a subset of action profiles that "survive" iterated elimination (i.e. $NE \subseteq SDSE$).

		Left	Center	Right
	Up	1, 1	0, 1	2, 4
Row	Middle	2, 2	1, 3	4, 1
	Down	3, 3	2, 1	1, 2

<u>Rule of thumb</u>: When eliminating rows, look only at row's payoffs. When eliminating columns, look only at column's payoffs.

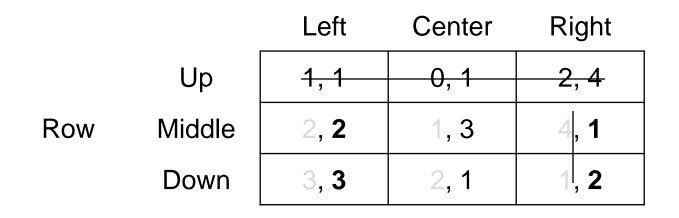
		Left	Center	Right
	Up	1, 1	0, 1	2, 4
Row	Middle	2, 2	1, 3	4, 1
	Down	3, 3	2, 1	1, 2

		Left	Center	Right
	Up	1, 1	0, 1	2 , 4
Row	Middle	2 , 2	1, 3	4, 1
	Down	3, 3	2, 1	1, 2


Middle dominates up, because **2>1**, **1>0**, and **4>2**. So we can eliminate up.

		Left	Center	Right
	Up	1, 1	0, 1	2, 4
Row	Middle	2, 2	1, 3	4, 1
	Down	3, 3	2, 1	1, 2

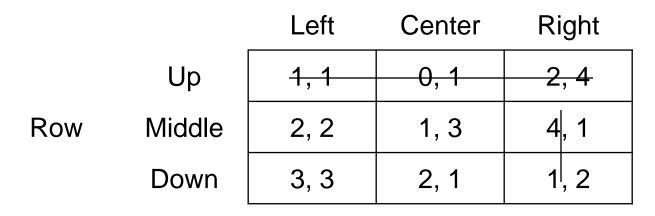
Now try to eliminate columns.


		Left	Center	Right
	Up	1, 1	0, 1	2, 4
Row	Middle	2, 2	1, 3	4, 1
	Down	3, 3	2, 1	1, 2

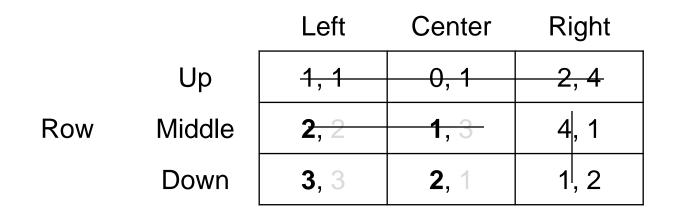
Now try to eliminate columns.

Now try to eliminate columns.

Left dominates right because 2>1 and 3>2.

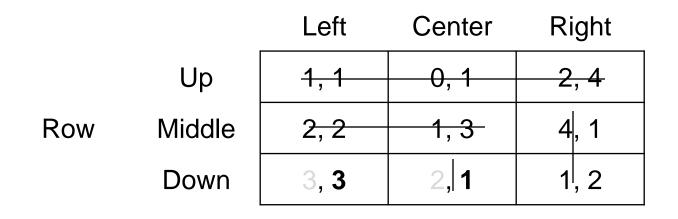


Now try to eliminate columns.

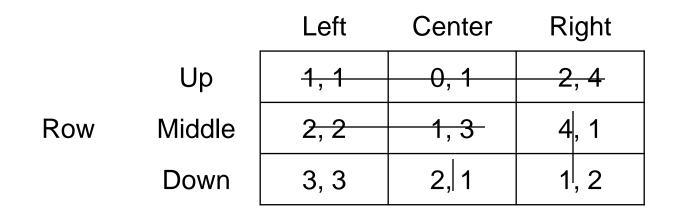

Left dominates right because 2>1 and 3>2.

Example: Iterated dominance

Column



Now try to eliminate rows again.


Now try to eliminate rows again.

Down dominates middle because 3>2 and 2>1.

Now try to eliminate columns again.

Left dominates center because 3>1.

SDSE = {Down, Left}

...because a single outcome remains, we call the game "dominance solvable."

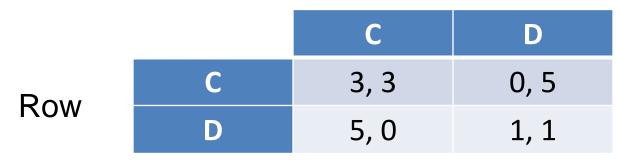
Practice: Iterated elimination of dominated strategies _{Column}

 x
 y
 z

 A
 2,3
 -16,2
 5,0

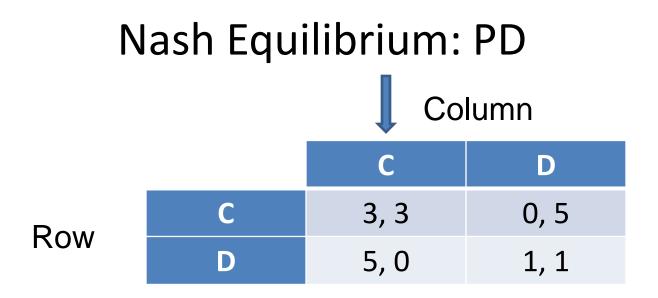
 B
 5,6
 4,6
 6,4

 C
 8,0
 3,10
 1,8

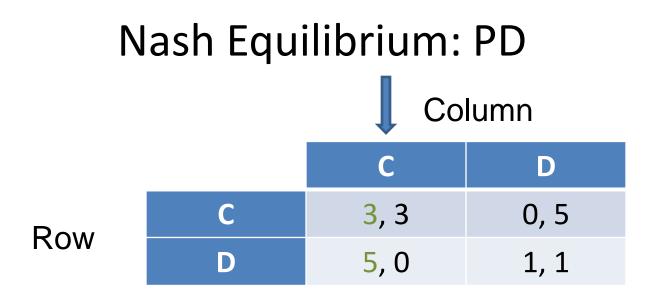

Row

21

Nash equilibrium

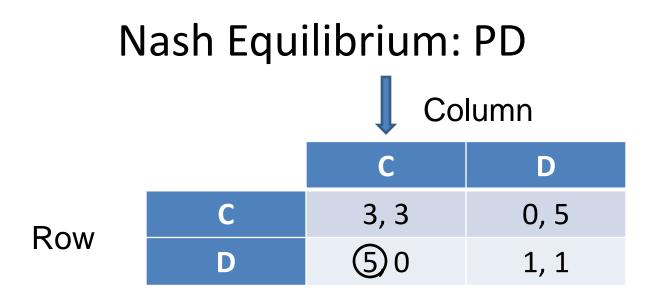

Informally, a Nash equilibrium is an action profile such that *no player has a unilateral incentive to "deviate"* (holding all other players' choices constant, each player's choice is rational)

Column



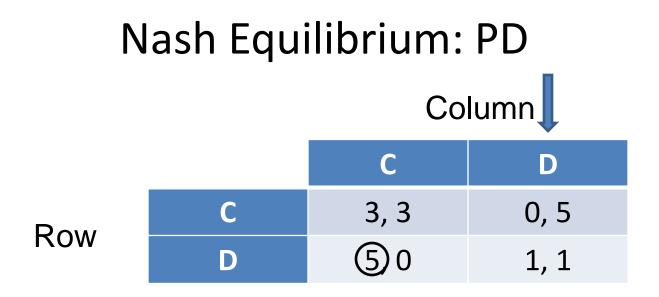
How do I find Nash equilibria?

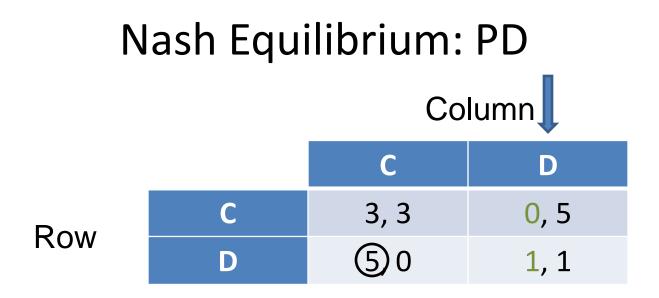
Determine the best responses, that is the best action (or strategy) for a player given the actions (or strategies) played by opponents. The best responses for each player intersect at the Nash equilibrium.



Given column plays C, what is best response for Row?

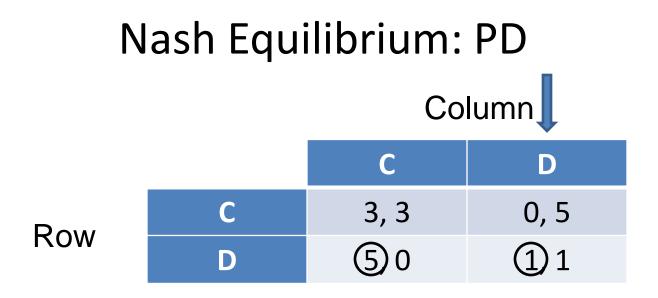
Given column plays C, what is best response for Row?


D because 5 > 3.


Given column plays C, what is best response for Row?

D because 5 > 3.

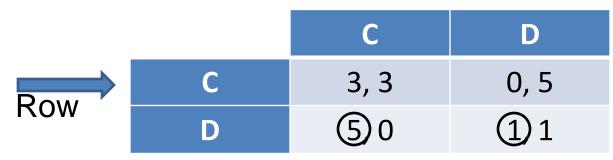
Let's circle 5 because it indicates one of the best responses.



Given column plays D, what is best response for Row?

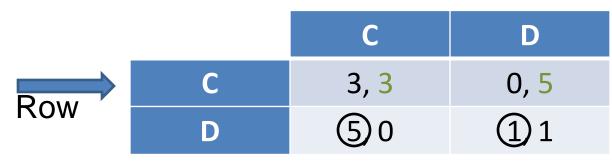
Given column plays D, what is best response for Row?

D because 1 > 0.



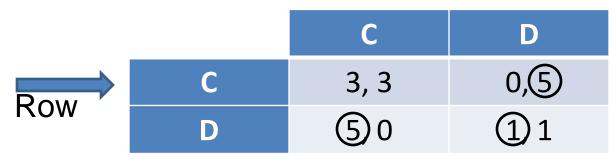
Given column plays D, what is best response for Row?

D because 1 > 0.


Let's circle 1 because it indicates one of the best responses.

Column

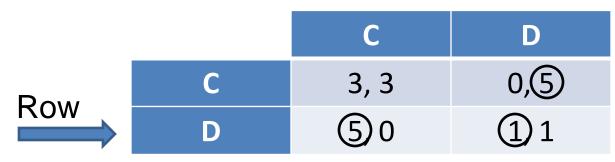
Given "Row" plays C, what is best response for Column?


Column

Given "Row" plays C, what is best response for Column?

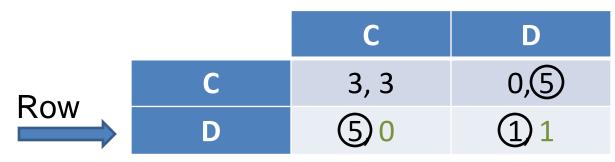
D because 5 > 3.

Column



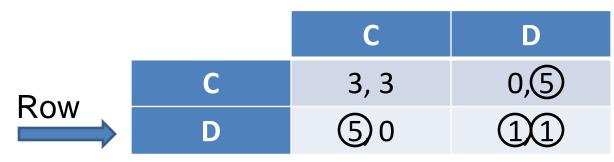
Given "Row" plays C, what is best response for Column?

D because 5 > 3.


Let's circle 5 because it indicates one of the best responses.

Column

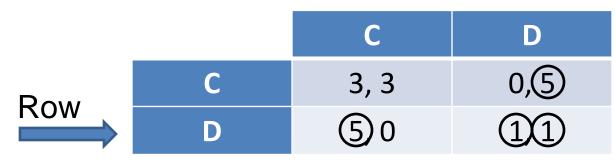
Given "Row" plays D, what is best response for Column?


Column

Given "Row" plays D, what is best response for Column?

D because 1 > 0.

Column



Given "Row" plays D, what is best response for Column?

D because 1 > 0.

Let's circle 1 because it indicates one of the best responses.

Column

Where the best responses intersect {D,D} is a Nash Equilbrium.

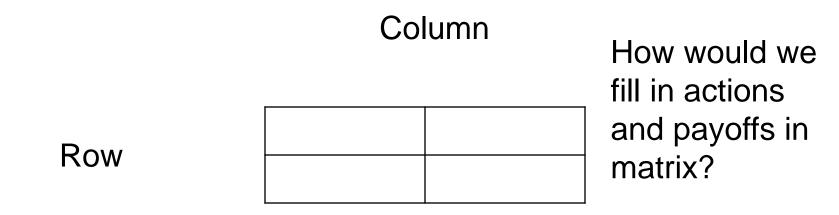
 $\mathsf{N}.\mathsf{E}.=\{\mathsf{D},\mathsf{D}\}$

Note: equilibria are always stated in terms of strategies (or actions), never in terms of payoffs in the outcomes.

Remarks

- An action profile is not a Nash equilibrium when at least one player has an incentive to *unilaterally* deviate (because the criterion is individual rationality, joint deviations are irrelevant)
- An "incentive to deviate" means that utility from another action must be *strictly* better than in the candidate action profile (indifferent between two different actions giving the highest utility)
- A Nash equilibrium is a *"stable" outcome* in the sense that it is *self-enforcing*

Practice: Nash Equilibrium


Column

Х У Ζ А 2, 3 -16, 2 5, 0 5, 6 4, 6 6, 4 Row В 3, 10 С 8, 0 1, 8

Stag hunt

The story

- Two hunters
- Capturing a stag requires joint effort
- A hare can be captured with individual effort
- Hunting the stag and a hare are mutually exclusive
- The stag is more valuable than the hare, which is still better than nothing


Stag hunt

The story

• Two hunters

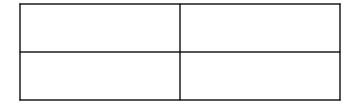
Row

- Capturing a stag requires joint effort
- A hare can be captured with individual effort
- Hunting the stag and a hare are mutually exclusive
- The stag is more valuable than the hare, which is still better than nothing

Column

What is NE?

What is SDSE?


Battle of the Sexes

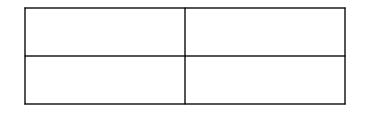
The story

- Husband and wife
- Choice of two activities: Ballet, Sports
- Wife prefers sports, husband prefers ballet
- Both prefer being together to being apart each gets zero if they are apart.

Husband

Wife

How would we fill in actions and payoffs in matrix?

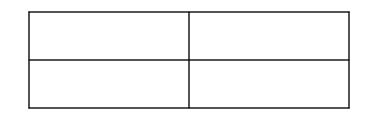

Battle of the Sexes

The story

- Husband and wife
- Choice of two activities: Ballet, Sports
- Wife prefers sports, husband prefers ballet
- Both prefer being together to being apart each gets zero if they are apart.

Husband

What is NE?


What is SDSE

Matching Pennies

The game

- Each player chooses Heads or Tails
- Row wins if choices match, looses if they differ.
- Column wins if choices differ, looses if they match.

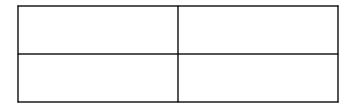
Column

How would we fill in actions and payoffs in matrix?

Row

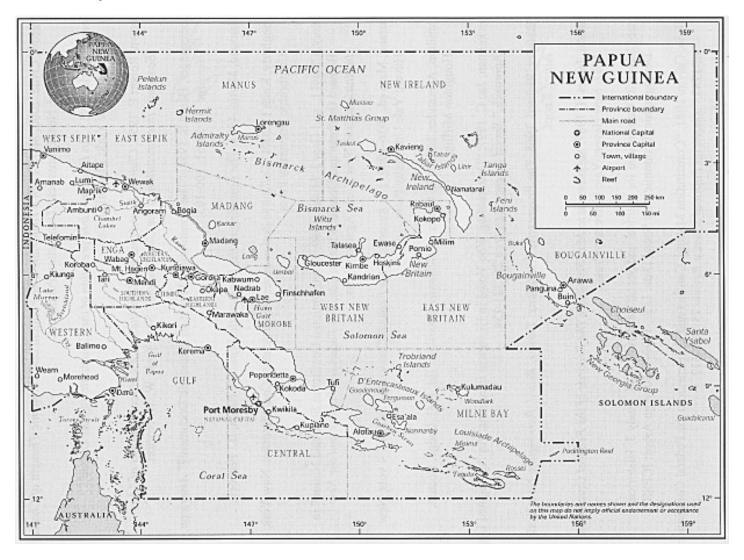
Matching Pennies

The game


- Each player chooses Heads or Tails
- Row wins if choices match, looses if they differ.
- Column wins if choices differ, looses if they match.

Column

What is NE?



Row

• This is a zero-sum game, which we will analyze using the concepts we already know.

• The story

• Normal Form Game

	Kimura			
Kenney		North	South	
	North	2	2	
	South	1	3	
		Kimura		
Kenney		North	South	What is NE?
	North	2, -2	2, -2	What is SDSE?
	South	1, -1	3, -3	

- Historical Outcome:
 - Keeney searched north.
 - Kimura sailed north.
 - Allies bombed the convoy for three days.
 - Of the 7,000 Japanese troops, only 800 reached Lae.
 - Only 13 allies were killed with the loss of 6 small planes.

Interpretation of multiple equilibria

- All Nash equilibria are "stable" and consistent with individually rational behavior.
- Nash equilibrium does not predict *which* equilibrium will be the outcome nor does it explain *how* players' actions settle on action profiles.
- It only tells us that once players actions settle on a Nash equilibrium profile, they have no incentive to change their behavior.

Summary

- Strategic games
 - Players
 - Actions for each player
 - Preferences over action profiles
- Nash equilibrium
 - Action profile such that no player has a unilateral incentive to deviate
 - Predicts stable outcomes, but may not be unique
- Key skills to develop
 - Translating verbal theories or models into strategic games
 - Determine whether an action profile is a SDSE
 - Determine whether an action profile is a Nash equilibrium