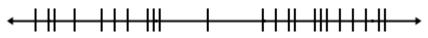
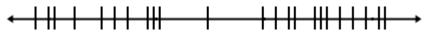

DERIVING IDEAL POINTS (ONE DIMENSION)


- How do we use real world data to find the location of ideal points?
- A. ADA and ACU scores (first idea)
 - Americans for Democratic Action.
 - American Conservative Union.
 - Count the number of times a Congress person supported the ADA position on a vote divided by the number of votes studied.

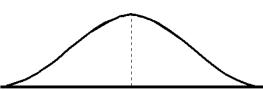
	ADA Position	Lott	Reid	Feingold
anti-abortion bill	Ν	Y	Ν	Ν
pro gun control bill	Y	Ν	Ν	Y
welfare reform bill	Y	<u>N</u>	<u>Y</u>	<u>Y</u>
ADA Score		0	2	3

- 2. The ADA score is supposed to measure how liberal a Congress person is on these issues, since the ADA position is always the more liberal.
- 3. In this case we could put people with a 3 on the left and people with a 0 on the right, and those with other numbers in between.

- 4. ACU scores work exactly the same way as the ADA scores, but in the opposite direction.
- 5. With more votes we get more precision and eventually the thing might look like a line, rather than a disjoint space.


6. Problems

Reps.


Dems.

- a. These scores tend to exaggerate the opinions of those in between.
 - 1) This is because the ADA (and ACU) look for bills they think really accentuate the liberal ideology (conservative ideology).
 - 2) Such bills are divisive and usually make the Democrats and the Republicans line up on opposite sides.
 - 3) In fact, representatives usually know which bills are ADA and ACU bills and vote to get a good score.

- 4. ACU scores work exactly the same way as the ADA scores, but in the opposite direction.
- 5. With more votes we get more precision and eventually the thing might look like a line, rather than a disjoint space.

- 6. Problems
 - a. These scores tend to exaggerate the opinions of those in between.
 - 1) This is because the ADA (and ACU) look for bills they think really accentuate the liberal ideology (conservative ideology).
 - 2) Such bills are divisive and usually make the Democrats and the Republicans line up on opposite sides.
 - 3) In fact, representatives usually know which bills are ADA and ACU bills and vote to get a good score.
 - 4) If they looked at less divisive bills, like a bill to fund victims of hurricane Katrina, then they might get greater cross-overs.

- 6. Problems
 - b. Can't be done if you don't know the liberal or conservative side of a bill.
 - 1) i.e. can't be done for many bills.

B. Optimal Classification (second idea)

- 1. Works in Two Steps.
 - a. Find optimal cut point for each vote.
 - 1) Cut point (defined): a point that separates the yea voters on one side from the nay voters on the other side.
 - b. Optimally classify each voter in the intervals created in step 1.
 - a. Repeat.

- B. Optimal Classification
 - 2. Assumptions
 - a. Voters have single peaked and symmetric preferences.
 - b. Voting is sincere.
 - c. For this demonstration, there is one dimension.

- **B.** Optimal Classification
 - 3. Four Bills
 - **a. B-2**: Sept 1989 amendment to a bill that would cut funding for the B-2 bomber.
 - Cambodia: July 1989 amendment to a bill that would give the President the power to fund non-communist forces in Cambodia.
 - **c. Tower**: March 1989 proposal to confirm John Tower as secretary of defense.
 - **d. MLK**: May 1989 amendment to a bill that would eliminate funding for a commission establishing MLK day.

B. Optimal Classification

4. 5 Senators in initial (random) order

	Nunn	Helms	Gore	Kerry	Dole
B-2	Ν	Ν	Ν	Y	Ν
Cambodia	Y	Y	Ν	Ν	Y
Tower	Ν	Y	Ν	Ν	Y
MLK	Ν	Y	Ν	Ν	Ν

B. Optimal Classification

5. Step1: find optimal cut points

Classification

Errors

1

	Nunn	Helms	Gore	Kerry	Dole
B-2	Ν	Ν	Ν	Y	Ν
Cambodia	Y	Υ	Ν	Ν	Y
Tower	Ν	Y	Ν	Ν	Y
MLK	Ν	Y	Ν	Ν	Ν

B-2

B. Optimal Classification

Classification 5. Step1: find optimal cut points <u>Errors</u> Helms Gore Kerry Nunn Dole **B-2** Ν Y Ν Ν Ν Υ Cambodia Υ Ν Ν Y Y Ν Ν Ν Y Tower Y Ν MLK Ν Ν Ν Cambodia **B-2**

B. Optimal Classification

Classification 5. Step1: find optimal cut points <u>Errors</u> Helms Gore Kerry Nunn Dole Ν Y **B-2** Ν Ν Ν Cambodia Y Y Ν Ν Y 2 Y Ν Ν Ν Υ Tower Ν MLK Ν Y Ν Ν Cambodia **B-2** Tower

B. Optimal Classification

Classification 5. Step1: find optimal cut points <u>Errors</u> Helms Gore Kerry Nunn Dole Ν Y **B-2** Ν Ν Ν Cambodia Y Y Ν Ν Y 2 Y Ν Ν Ν Y Tower Υ MLK Ν Ν Ν Ν Cambodia **B-2** Tower MLK

B. Optimal Classification

Classification 5. Step1: find optimal cut points <u>Errors</u> Helms Gore Kerry Nunn Dole **B-2** Ν Y Ν Ν Ν Cambodia Y Y Ν Ν Y 2 Y Ν Y Ν Ν Tower 1 Ν MLK Ν Y Ν Ν 5 Cambodia **B-2** Tower MLK

B. Optimal Classification

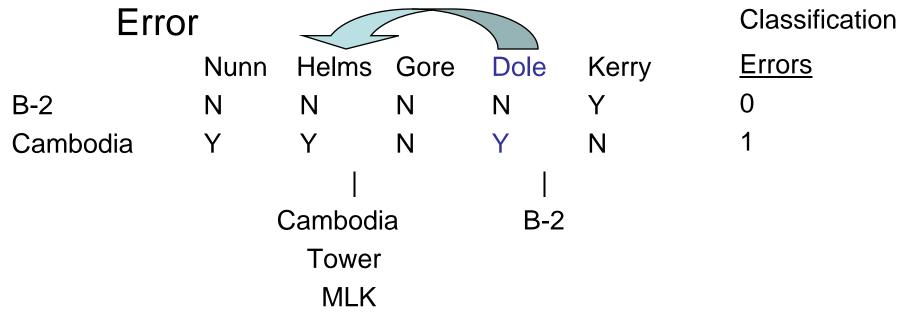
6. Step2: move Senators to Reduce Error

	Nunn	Helms	Gore	Kerry	Dole	<u>Errors</u>
B-2	Ν	Ν	Ν	Y	Ν	1
Cambodia	Y	Y	Ν	Ν	Υ	1
Tower	Ν	Y	Ν	Ν	Υ	2
MLK	Ν	Y	Ν	Ν	Ν	1
						<u>-</u> 5
		3				
		MLK				

B. Optimal Classification 6. Step2: move Senators to Reduce Error Classification Nunn Helms Gore Kerry <u>Errors</u> Dole **B-2** Ν Ν Y 1 Ν Ν Cambodia **B-2** Tower MLK

B. Optimal Classification

6. Step2: move Senators to Reduce Error Nunn Helms Gore Dole Kerry B-2 N N N N Y Cambodia B-2

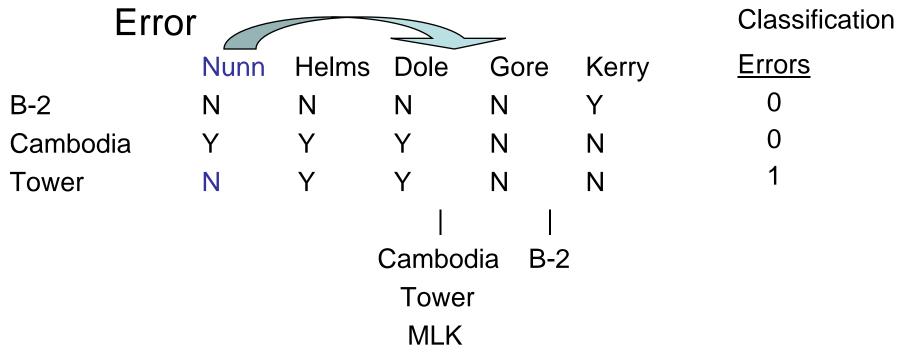

Tower

MLK

Classification Errors 0

B. Optimal Classification

6. Step2: move Senators to Reduce



B. Optimal Classification

6. Step2: move Senators to Reduce Error Classification Helms Dole Kerry <u>Errors</u> Nunn Gore B-2 \mathbf{O} Ν Ν Ν Ν Y Y Ν $\mathbf{0}$ Camb Y Y Ν Cambodia B-2 Tower MLK

B. Optimal Classification

6. Step2: move Senators to Reduce

B. Optimal Classification

6. Step2: move Senators to Reduce Error

	Helms	Dole	Nunn	Gore	Kerry	Errors		
B-2	Ν	Ν	Ν	Ν	Υ	0		
Cambodia	Y	Y	Y	Ν	Ν	1		
Tower	Y	Y	Ν	Ν	Ν	0		
	Cambodia B-2							
Tower								
	MLK							

B. Optimal Classification

6. Step2: move Senators to Reduce Error

	Helms	Dole	Nunn	Gore	Kerry	Errors
B-2	Ν	Ν	Ν	Ν	Y	0
Cambodia	Y	Y	Y	Ν	Ν	1
Tower	Y	Y	Ν	Ν	Ν	0
But notice, by moving Nunn we added a Classification error.		 Cambo Towe MLK	er	 B-2		

B. Optimal Classification

6. Step2: move Senators to Reduce Error

	Helms	Dole	Nunn	Gore	Kerry	<u>Errors</u>
B-2	Ν	Ν	Ν	Ν	Υ	0
Cambodia	Y	Y	Y	Ν	Ν	1
Tower	Y	Y	Ν	Ν	Ν	0
MLK	Y	Ν	Ν	Ν	Ν	1
Notice: we can't get rid		Cambo	odia	B-2		
of the MLK error if the		Towe	ər			
cut points are fixed.		MLK	ζ.			
Moving Nunn only						

Classification

increases the error.

B. Optimal Classification

Repeat Step1: find optimal cut points.

Helms Dole Nunn Gore Kerry Errors **B-2** Ν Ν Ν Ν Y 0 Cambodia Y Y Y Ν Ν 1 Tower Y Y Ν Ν Ν 0 Ν MLK Y Ν Ν Ν 1 Cambodia **B-2** Tower MLK

B. Optimal Classification

7. Repeat Step1: find optimal cut points.

Helms Dole Nunn Gore Kerry Errors **B-2** Ν Ν Ν Ν Y 0 Cambodia Y Y Y Ν Ν 1 Tower Y Y Ν Ν Ν 0 Ν MLK Y Ν Ν Ν 1 Cambodia **B-2** Tower MLK

B. Optimal Classification

7. Repeat Step1: find optimal cut points.

Helms Dole Nunn Gore Kerry Errors **B-2** Ν Ν Ν Ν Y 0 Cambodia Y Y Y N Ν 0 Tower Y Υ N N Ν 0 Ν Ν MLK Y Ν Ν 1 Cambodia B-2 Tower MLK

B. Optimal Classification

7. Repeat Step1: find optimal cut points.

Helms Dole Nunn Gore Kerry Errors **B-2** Ν Ν Ν Ν Y 0 Cambodia Y Y Y N Ν 0 Tower Y Υ N N Ν 0 Ν Ν MLK Y Ν Ν 1 Cambodia B-2 Tower MLK

B. Optimal Classification

7. Repeat Step1: find optimal cut points.

	Helms	Dole	Nunn	Gore	Kerry	Errors		
B-2	Ν	Ν	Ν	Ν	Y	0		
Cambodia	Υ	Y	Y	Ν	Ν	0		
Tower	Y	Y	Ν	Ν	Ν	0		
MLK	Y	Ν	Ν	Ν	Ν	0		
MLK Cambodia B-2								
Tower								

B. Optimal Classification

7. Repeat Step1: find optimal cut points.

	Helms	Dole	Nunn	Gore	Kerry	Errors
B-2	Ν	Ν	Ν	Ν	Y	0
Cambodia	Y	Y	Y	Ν	Ν	0
Tower	Υ	Y	Ν	Ν	Ν	0
MLK	Y	Ν	Ν	Ν	Ν	0
In general the process is repeated until there are the least number of errors (which is not always zero).	 MLŀ	ا Towe		 dia B-2		

B. Optimal Classification

- 8. Advantages:
 - a. Does not exaggerate opinions of those on the extremes.
 - b. Does not require knowing liberal or conservative position on a bill.
- 9. Weakness:
 - a. Produces only an ordering, not cardinal distances.

- C. NOMINATE (third idea)
 - 1. NOMINATE works similarly but its is uses a maximum likelihood routine (i.e. heavy statistics).
 - a. One of its advantages is that it creates a cardinal ranking based on the likelihood of each bill location, not just an order.