Regular Transfer Functions
Identification Issues and Causality Testing

Jamie Monogan
University of Georgia
January 30, 2018
Objectives

By the end of these meetings, participants should be able to:

- Explain the logic of double prewhitening and perform the procedure on real data.
- Use a cross-correlation function of double prewhitened data to identify a causal relationship.
- Estimate and diagnose a transfer function.
Where we are.

- We know how to filter series with ARIMA noise models.
- We know how to do a static regression model given the noise model.
- We know how to do a dynamic model with an intervention given the noise model.
- Now how can we specify a dynamic model with a continuous input variable given the noise model?
Dynamic and Static Again

Dynamic Changes in the values of x affect current and future values of y.

Static Changes in the values of x affect the current value of y.

- Introducing a lag specification for x in a static model does not make it dynamic! It still has the characteristic that causation is instantaneous and complete in one time period.
- Dynamic causation flows over time.
Implied Impulse Response Function
First Order Transfer Function (Onset at Lag 1)

![Diagram showing the effect of lag on response function](image)
Implied Impulse Response Function

Koyck Scheme Regression: \(y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 x_{t-1} + e_t \)
Implied Impulse Response Function

OLS Regression: $y_t = \beta_0 + \beta_1 x_{t-1} + e_t$
The Issue

- A static regression cannot model causal flow, which is dynamic.
- It will in general produce a Type II error of inference, failing to observe an association which truly exists.
- That remains true even if you cheat and pick lag length for optimum fit.
The Effect of Introducing x_t on the Right Hand Side

- A regular transfer function is exactly the model we have employed for interventions, except that x_t replaces I_t.
- Because x_t is a random variable, it will have stochastic errors.
- Because it is a time series, it is likely also to have a systematic error aggregation process.
- That presents a problem.

The standard first order case

$$y_t = \left[\frac{\omega_0}{1 - \delta_1 B} \right] x_{t-b} + N_t \tag{1}$$

Question: How do we identify the elements of a presumed transfer function from empirical data?
A Shift of Perspective

- Terms like a_x we have referred to as “errors.”
- But they are also “innovations,” and as such incorporate all of the real information in a series x.
- The rest of x is an error aggregation process which is of no inherent interest except that we need to model it in order to control its effects.
- But in causal terms, it is the innovations, a_x, which matter. They are white noise by assumption—random with respect to time—but they are not random in the sense of being uncaused.
- Parallel to the information thesis of rational expectations: Only the unpredictable portion of variation represents real information in a series.
The Transfer Function Setup

Note the asymmetry in the treatment of x and y
The Dilemma

1. \(x = f(a_x) \)
 - \(x \) is a filtered version of its innovations

2. \(y = tf(x) + N_y \)
 - our causal postulate

3. \(y = tf(f(a_x)) + N_y \)
 - substituting 1 into 2

Restated

- \(a_x \) is the causal force that drives the system.
- We want to know how \(y \) responds to \(a_x \), but we observe \(a_x \) only through its filter, \(x \).
- Solution: remove the filter.
Three Specification Decisions

- Order of ω, (r)
- Order of δ, (s)
- Number of periods before onset (b)

$$y_t = \left[\frac{\omega_r}{1 - \delta_s B} \right] x_{t-b} + N_t$$ \hspace{1cm} (2)
Cross Correlation Function (CCF)

- For two variables, x and y, the CCF is the product moment correlations between various leads and lags of the two.
- **IF** x and y are white noise, the CCF becomes a map of causal flow between them.
- $CCF(k) = IRF(k) \cdot (\frac{\sigma_y}{\sigma_x})$, i.e., CCF is standardized IRF.
- Given the asymmetry, $x \rightarrow y$, we need to be mindful of positive, negative, or zero lags of the CCF.
 - $CCF(0)$, is ambiguous about causality. It has no asymmetry.
 - Lags in the wrong direction could indicate the opposite causal flow, $y \rightarrow x$.
Identifying r, s, and b from the CCF

With an Example CCF

- Identify r, s, and b
 - b first (lags before onset)
 - Then r—numerator order (usually 0)
 - Initial estimate of ω is $\text{IRF}(b)$
 - Then s—denominator order
 - Initial estimate of δ is $\text{CCF}(b+1)/\text{CCF}(b)$
Prewhitening
Single and Double Versions

Single
Applies the noise model for x, N_x, to both x and y.
- Logic respects the equality of the model, applying exactly the same transformation to both sides of the equation.
- Only one side, here x, needs to be white noise to eliminate danger of spuriousness.
- Requires specialized software.

Double
Identify and estimate separate noise models for x and y, whitening each with its own model.
- Easy to do, e.g., with R or Stata.
- Each side of the equation gets its own appropriate model.
Babies and Bathwater

- It is often said—most often by those whose cherished theories are being destroyed—that prewhitening is “throwing out the baby with the bathwater.”

- Less colorfully, that prewhitening removes some of the causal influence that we are studying and is therefore excessively conservative.

- A rebuttal: “We have so much bathwater, such as empirical findings that result from specification searches in small samples, that a baby now and then is a small cost.”

- And remember, it is only an identification technique. When we estimate a transfer function, there is no whitening applied to x (except differencing, if necessary).
Exogeneity and Endogeneity Defined

- We often use the language “independent” and “dependent” to describe our variables.
- These terms describe researcher decisions—what goes on the left hand side and what goes on the right.
- But nature truly decides what is causal and what is caused.
- We need new language to describe empirical analyses of causal ordering.
- We will use *exogenous* to mean a variable that is truly uncaused in an equation system and *endogenous* to mean a variable which is caused.
- Thus causality tests are also tests for exogeneity and endogeneity.
Identification as Causality Test

- Transfer function identification thus may be seen as a causality test, telling us empirically which variables are exogenous and which endogenous.
- We are observing quite directly causal asymmetry.
- If we assert that $x \rightarrow y$, we may find evidence of that, but it may turn out empirically that
 - $y \rightarrow x$, (wrong direction) or
 - $x \Leftrightarrow y$, (no causation), or
 - $x \Leftrightarrow y$, (reciprocal causation)

Advantages and Disadvantages

- So prewhitened cross correlations are a causality test.
- Its advantage is that it shows a picture of causal asymmetry, very direct evidence.
- Its disadvantages are (1) too many steps, and (2) too much researcher judgment enters into the process.
A Preview of the Direct Granger Test

- The alternative for the bivariate case is the direct Granger test.
- In direct Granger you first regress y on several lagged values of y, the intention being to model out all the systematic error aggregation in y.
- Then you add lagged values of x to the model and test to see if the contribution of the x lags is or is not significant.
 - Specifically, conduct a block F test.
- Then reverse the test for $y \rightarrow x$
- Direct Granger gives a clean result, p values on the exogeneity of both x and y.
- Its disadvantage, not very large, is that estimating all those extra parameters causes efficiency loss.
Step by Step Transfer Function Identification

1. Identify \(x \)
2. Estimate \(x \), and create residuals, \(\hat{e}_x \)
3. Diagnose \(x \)
 - Important! If we screw up here, all subsequent steps will be wrong.
4. Identify \(y \)
5. Estimate \(y \), and create residuals, \(\hat{e}_y \)
6. Diagnose \(y \)
 - Not as critical as \(x \) because we will have subsequent evidence.
7. Cross correlate \(x \) and \(y \) residuals
 - R: acf command (insert a matrix of two variables)
 - Stata: xcorr command
8. Identify \(r, s, \) and \(b \)
 - \(b \) first (lags before onset)
 - Then \(r \)—numerator order (usually 0). Initial estimate of \(\omega \) is IRF(\(b \))
 - Then \(s \)—denominator order. Initial estimate of \(\delta \) is CCF(\(b+1 \))/CCF(\(b \))
9. Estimate transfer function
10. Diagnosis: to be discussed
Critiques of Box-Jenkins Models

- Too much art:
 - Two competent analysts will often produce different models.

- Atheoretical:
 - Often just wrong, confusing structure (TF) with error (ARIMA).
 - Sometimes cheap shot, atheoretical in situations where there is no theory.

- Identification is fundamentally bivariate:
 - There is no multivariate procedure.

- The baby and the bathwater:
 - Might prewhitening eliminate evidence of genuine causality (along with spuriousness)?
An Important Example

- Long and short rates defined
- We have a clear theory. Long rates are determined by short rates and by inflation expectations.
 - Long = f(Short, Expectations)
- So we should be able to identify and estimate the impact of short rates on long rates.
Problems with Prewhitening (and Granger Tests)

Long and Short Rates

![Graph showing Long and Short Interest Rates](image)

- **X-axis:** Year, from Jan-46 to Jan-07
- **Y-axis:** Percent
- **Legend:**
 - Black line: Treasury Bonds
 - Pink line: Prime Rate
ARIMA modeling assumes that variance is a constant σ^2 for all t (homoscedasticity).

Some series, such as these, have the property that variance is related to the level of the series.

- As the level changes, e.g., growing with price inflation, the variance increases accordingly.

Heteroscedasticity, $\sigma_i^2 \neq \sigma_j^2$ for $i \neq j$, produces estimator inefficiency.

If constant percentage growth is the problem, then logging the series is the fix.

(Preview: if logging is not sufficient, then ARCH/GARCH.)
The Two Series as Logs
Problems with Prewhitening (and Granger Tests)

Cross Correlation Function. This Figure is Opposite of R. Short Rates ($x=\text{Prime}$) leading Long Rates ($y=\text{Tbills}$)
Conclusion

- Short rates do not cause long rates. Therefore
 - Our theory is wrong, and
 - The covariation we think we see between them must be false.
- But this can’t be! Short rates must cause long rates.
- The baby and the bathwater again.
 - The method must be wrong.
- To be addressed later in the course.
Transfer Function Diagnosis

- **Two Questions:**
 - (1) Do we have the right noise model for y?
 - (2) Have we captured the flow of x into y?
- (1) The usual residual white noise test
 - If failed, then respecify noise model for y
- (2) Cross correlation of prewhitened x with TF residuals
 - If there is any significant correlation, the TF specification is wrong.
- Break to R to work through a transfer function.
For Next Time:

- Download Enders’s (2009) monetary policy data `moneyDem.dta` from http://dx.doi.org/10.7910/DVN/ARKOTI.
- A description of these data can be found on page 186 as part of question #4 in *Political Analysis Using R*. Do not attempt to work question #4. Just feel free to consult the variable information.
- Consider change in the real M2 money supply (`d1rm2`) and the 3-month interest rate on U.S. Treasury bills (`drs`).
- Complete all of the steps of identifying, estimating, and diagnosing a transfer function between these variables. Prewhiten each. Choose a specification. Check that it is valid.
- Warning: One variable’s ARIMA process is hard to nail. Trying a few things I still got a similar transfer function result.

Reading: