1 Optimization (1 pt.)

Consider the spatial proximity model of voting, which assumes that a voter votes for the political party that takes the closest issue position to his or her own most preferred issue position. Suppose the party’s issue position is represented by \(p \) and the voter’s issue position is \(x \). We might represent the voter’s utility from choosing a certain party as: \(u(p) = -(x - p)^2 \).

Suppose the party wants to choose a position \(p \) maximizes the median voter’s utility of choosing it. Find the value of \(p \) that does that. Use calculus to find your answer, showing that the first and second order conditions are both satisfied.

2 Evaluate the following integrals (2 pts.)

a) \(\int_6^8 x^3 \, dx \)

b) \(\int_0^4 \left(\frac{1}{1 + x} + 2x \right) \, dx \) \((x \neq -1) \)

c) \(\int_1^2 (2x^3 - 1)(6x^2) \, dx \)

d) \(\int (x + 3)e^{x^2 + 6x} \, dx \)

e) \(\int_x^e x \sqrt{x + 1} \, dx \)

f) \(\int_1^e x \ln x \, dx \)

g) \(\int_1^e \frac{\sqrt{1 + \ln x}}{x} \, dx \)

h) \(\int x a^x \, dx \), where \(a \) is some constant.

3 R work (1 pt.)

Consider the problem from Question #2.f. In R, define the function: \(x \ln x \). Plot this function over the domain \(x \in (0, 3] \). Draw a polygon of the area under the curve over the domain \(x \in [1, e] \). Compute the integral from #2.f using the `integrate` command.