
CHAPTER 4

Linear regression: before and after fitting
the model

It is not always appropriate to fit a classical linear regression model using data
in their raw form. As we discuss in Sections 4.1 and 4.4, linear and logarithmic
transformations can sometimes help in the interpretation of the model. Nonlinear
transformations of the data are sometimes necessary to more closely satisfy additiv-
ity and linearity assumptions, which in turn should improve the fit and predictive
power of the model. Section 4.5 presents some other univariate transformations that
are occasionally useful. We have already discussed interactions in Section 3.3, and
in Section 4.6 we consider other techniques for combining input variables.

4.1 Linear transformations

Linear transformations do not affect the fit of a classical regression model, and they
do not affect predictions: the changes in the inputs and the coefficients cancel in
forming the predicted value Xβ.1 However, well-chosen linear transformation can
improve interpretability of coefficients and make a fitted model easier to understand.
We saw in Chapter 3 how linear transformations can help with the interpretation
of the intercept; this section provides examples involving the interpretation of the
other coefficients in the model.
Scaling of predictors and regression coefficients. The regression coefficient βj rep-
resents the average difference in y comparing units that differ by 1 unit on the jth

predictor and are otherwise identical. In some cases, though, a difference of 1 unit
on the x-scale is not the most relevant comparison. Consider, for example, a model
fit to data we downloaded from a survey of adult Americans in 1994 that predicts
their earnings (in dollars) given their height (in inches) and sex (coded as 1 for men
and 2 for women):

earnings = −61000 + 1300 · height + error, (4.1)

with a residual standard deviation of 19000. (A linear model is not really appropri-
ate for these data, as we shall discuss soon, but we’ll stick with the simple example
for introducing the concept of linear transformations.)

Figure 4.1 shows the regression line and uncertainty on a scale with the x-axis
extended to zero to display the intercept—the point on the y-axis where the line
crosses zero. The estimated intercept of −61000 has little meaning since it corre-
sponds to the predicted earnings for a person of zero height.

Now consider the following alternative forms of the model:

earnings = −61000 + 51 · height (in millimeters) + error
earnings = −61000 + 81000000 · height (in miles) + error.

How important is height? While $51 does not seem to matter very much, $81,000,000

1 In contrast, in a multilevel model, linear transformations can change the fit of a model and its
predictions, as we explain in Section 13.6.
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Fitted linear model x−axis extended to 0

−

Figure 4.1 Regression of earnings on height, earnings = −61000 + 1300 · height, with solid
line showing the fitted regression model and light lines indicating uncertainty in the fitted
regression. In the plot on the right, the x-scale is extended to zero to reveal the intercept
of the regression line.

is a lot. Yet, both these equations reflect the same underlying information. To
understand these coefficients better, we need some sense of the variation in height
in the population to which we plan to apply the model. One approach is to consider
the standard deviation of heights in the data, which is 3.8 inches (or 97 millimeters,
or 0.000061 miles). The expected difference in earnings corresponding to a 3.8-inch
difference in height is $1300 ·3.8 = $51 ·97 = $81000000 ·0.000061 = $4900, which is
reasonably large but much smaller than the residual standard deviation of $19000
unexplained by the regression.

Standardization using z-scores

Another way to scale the coefficients is to standardize the predictor by subtract-
ing the mean and dividing by the standard deviation to yield a “z-score.” In this
example, height would be replaced by z.height = (height − 66.9)/3.8, and the
coefficient for z.height will be 4900. Then coefficients are interpreted in units of
standard deviations with respect to the corresponding predictor just as they were,
after the fact, in the previous example. In addition, standardizing predictors using
z-scores will change our interpretation of the intercept to the mean of y when all
predictor values are at their mean values.

We actually prefer to divide by 2 standard deviations to allow inferences to be
more consistent with those for binary inputs, as we discuss in Section 4.2.

Standardization using reasonable scales

It is often useful to keep inputs on familiar scales such as inches, dollars, or years,
but making convenient rescalings to aid in the interpretability of coefficients. For
example, we might work with income/$10000 or age/10.

For another example, in some surveys, party identification is on a 1–7 scale, from
strong Republican to strong Democrat. The rescaled variable (PID − 4)/2, equals
−1 for Republicans, 0 for moderates, and +1 for Democrats, and so the coefficient
on this variable is directly interpretable.
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4.2 Centering and standardizing, especially for models with
interactions

Figure 4.1b illustrates the difficulty of interpreting the intercept term in a regres-
sion in a setting where it does not make sense to consider predictors set to zero.
More generally, similar challenges arise in interpreting coefficients in models with
interactions, as we saw in Section 3.3 with the following model:

R outputlm(formula = kid.score ~ mom.hs + mom.iq + mom.hs:mom.iq)

coef.est coef.se
(Intercept) -11.5 13.8
mom.hs 51.3 15.3

mom.iq 1.1 0.2
mom.hs:mom.iq -0.5 0.2
n = 434, k = 4
residual sd = 18.0, R-Squared = 0.23

The coefficient on mom.hs is 51.3—does this mean that children with mothers
who graduated from high school do, on average, 51.3 points better on their tests?
No. The model includes an interaction, and 51.3 is the predicted difference for kids
that differ in mom.hs, among those with mom.iq = 0. Since mom.iq is never even
close to zero (see Figure 3.4 on page 35), the comparison at zero, and thus the
coefficient of 51.3, is essentially meaningless.

Similarly, the coefficient of 1.1 for “main effect” of mom.iq is the slope for this
variable, among those children for whom mom.hs = 0. This is less of a stretch (since
mom.hs actually does equal zero for many of the cases in the data; see Figure 3.1
on page 32) but still can be somewhat misleading since mom.hs = 0 is at the edge
of the data.

Centering by subtracting the mean of the data

We can simplify the interpretation of the regression model by first subtracting the
mean of each input variable:

R codec.mom.hs <- mom.hs - mean(mom.hs)

c.mom.iq <- mom.iq - mean(mom.iq)

The resulting regression is easier to interpret, with each main effect corresponding
to a predictive difference with the other input at its average value:

R outputlm(formula = kid.score ~ c.mom.hs + c.mom.iq + c.mom.hs:c.mom.iq)

coef.est coef.se
(Intercept) 87.6 0.9
c.mom.hs 2.8 2.4
c.mom.iq 0.6 0.1

c.mom.hs:c.mom.iq -0.5 0.2
n = 434, k = 4
residual sd = 18.0, R-Squared = 0.23

The residual standard deviation and R2 do not change—linear transformation of the
predictors does not affect the fit of a classical regression model—and the coefficient
and standard error of the interaction do not change, but the main effects and the
intercept move a lot and are now interpretable based on comparison to the mean
of the data.
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Using a conventional centering point

Another option is to center based on an understandable reference point, for example,
the midpoint of the range for mom.hs and the population average IQ:

R code c2.mom.hs <- mom.hs - 0.5

c2.mom.iq <- mom.iq - 100

In this parameterization, the coefficient of c2.mom.hs is the average predictive
difference between a child with mom.hs = 1 and mom.hs = 0, for those children with
mom.iq = 100. Similarly, the coefficient of c2.mom.iq corresponds to a comparison
for the case mom.hs = 0.5, which includes no actual data but represents a midpoint
of the range.

R output lm(formula = kid.score ~ c2.mom.hs + c2.mom.iq + c2.mom.hs:c2.mom.iq)

coef.est coef.se
(Intercept) 86.8 1.2

c2.mom.hs 2.8 2.4
c2.mom.iq 0.7 0.1
c2.mom.hs:c2.mom.iq -0.5 0.2

n = 434, k = 4
residual sd = 18.0, R-Squared = 0.23

Once again, the residual standard deviation, R2, and coefficient for the interaction
have not changed. The intercept and main effect have changed very little, because
the points 0.5 and 100 happen to be close to the mean of mom.hs and mom.iq in
the data.

Standardizing by subtracting the mean and dividing by 2 standard deviations

Centering helped us interpret the main effects in the regression, but it still leaves
us with a scaling problem. The coefficient of mom.hs is much larger than that of
mom.iq, but this is misleading, considering that we are comparing the complete
change in one variable (mother completed high school or not) to a mere 1-point
change in mother’s IQ, which is not much at all (see Figure 3.4 on page 35).

A natural step is to scale the predictors by dividing by 2 standard deviations—we
shall explain shortly why we use 2 rather than 1—so that a 1-unit change in the
rescaled predictor corresponds to a change from 1 standard deviation below the
mean, to 1 standard deviation above. Here are the rescaled predictors in the child
testing example:

R code z.mom.hs <- (mom.hs - mean(mom.hs))/(2*sd(mom.hs))
z.mom.iq <- (mom.iq - mean(mom.iq))/(2*sd(mom.iq))

We can now interpret all the coefficients on a roughly common scale (except for the
intercept, which now corresponds to the average predicted outcome with all inputs
at their mean):

R output lm(formula = kid.score ~ z.mom.hs + z.mom.iq + z.mom.hs:z.mom.iq)
coef.est coef.se

(Intercept) 87.6 0.9

z.mom.hs 2.3 2.0
z.mom.iq 17.7 1.8
z.mom.hs:z.mom.iq -11.9 4.0

n = 434, k = 4
residual sd = 18.0, R-Squared = 0.23
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Why scale by 2 standard deviations?

We divide by 2 standard deviations rather than 1 to maintain coherence when con-
sidering binary input variables. To see this, consider the simplest binary x variable
which takes on the values 0 and 1, each with probability 0.5. The standard devia-
tion of x is then

√
0.5 · 0.5 = 0.5, and so the standardized variable, (x−µx)/(2σx),

takes on the values ±0.5, and its coefficient reflects comparisons between x = 0 and
x = 1. In contrast, if we had divided by 1 standard deviation, the rescaled variable
takes on the values ±1, and its coefficient corresponds to half the difference between
the two possible values of x. This identity is close to precise for binary inputs even
when the frequencies are not exactly equal, since

√
p(1 − p) ≈ 0.5 when p is not

too far from 0.5.
In a complicated regression with many predictors, it can make sense to leave

binary inputs as is, and linearly transform continuous inputs, possibly by scaling
using the standard deviation. In this case, dividing by 2 standard deviations en-
sures a rough comparability in the coefficients. In our children’s testing example,
the predictive difference corresponding to 2 standard deviations of mother’s IQ is
clearly much higher than the comparison of mothers with and without a high school
education.

Multiplying each regression coefficient by 2 standard deviations of its predictor

For models with no interactions, a procedure that is equivalent to centering and
rescaling is to leave the regression predictors as is, and then create rescaled regres-
sion coefficients by multiplying each β by two times the standard deviation of its
corresponding x. This gives a sense of the importance of each variable, controlling
for all the others in the linear model. As noted, scaling by 2 (rather than 1) standard
deviations allows these scaled coefficients to be comparable to unscaled coefficients
for binary predictors.

4.3 Correlation and “regression to the mean”

Consider a regression with a single predictor (in addition to the constant term);
thus, y = a+bx+error. If both x and y are standardized—that is, if they are defined
as x <- (x-mean(x))/sd(x) and y <- (y-mean(y))/sd(y)—then the regression
intercept is zero and the slope is simply the correlation between x and y. Thus, the
slope of a regression of two standardized variables must always be between −1 and
1, or, to put it another way, if a regression slope is more than 1 or less than −1,
the variance of y must exceed that of x. In general, the slope of a regression with
one predictor is b = ρσy/σx, where ρ is the correlation between the two variables
and σx and σy are the standard deviations of x and y.

The principal components line and the regression line

Some of the confusing aspects of regression can be understood in the simple case of
standardized variables. Figure 4.2 shows a simulated-data example of standardized
variables with correlation (and thus regression slope) 0.5. The left plot shows the
principal component line, which goes closest through the cloud of points, in the
sense of minimizing the sum of squared Euclidean distances between the points and
the line. The principal component line in this case is simply y = x.

The right plot in Figure 4.2 shows the regression line, which minimizes the sum
of the squares of the vertical distances between the points and the line—it is the
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Figure 4.2 Data simulated from a bivariate normal distribution with correlation 0.5. The
regression line, which represents the best prediction of y given x, has half the slope of the
principal component line, which goes closest through the cloud of points.

familiar least squares line, y = â + b̂x, with â, b̂ chosen to minimize
∑n

i=1(yi − (â +
b̂xi))2. In this case, â = 0 and b̂ = 0.5; the regression line thus has slope 0.5.

When given this sort of scatterplot (without any lines superimposed) and asked to
draw the regression line of y on x, students tend to draw the principal component
line shown in Figure 4.2a. However, for the goal of predicting y from x, or for
estimating the average of y for any given value of x, the regression line is in fact
better—even if it does not appear so at first.

The superiority of the regression line for estimating the average of y given x can
be seen from a careful study of Figure 4.2. For example, consider the points at
the extreme left of either graph. They all lie above the principal components line
but are roughly half below and half above the regression line. Thus, the principal
component line underpredicts y for low values of x. Similarly, a careful study of the
right side of each graph shows that the principal component line overpredicts y for
high values of x. In contrast, the regression line again gives unbiased predictions,
in the sense of going through the average value of y given x.

Regression to the mean

Recall that when x and y are standardized (that is, placed on a common scale,
as in Figure 4.2), the regression line always has slope less than 1. Thus, when x
is 1 standard deviations above the mean, the predicted value of y is somewhere
between 0 and 1 standard deviations above the mean. This phenomenon in linear
models—that y is predicted to be closer to the mean (in standard-deviation units)
than x—is called regression to the mean and occurs in many vivid contexts.

For example, if a woman is 10 inches taller than the average for her sex, and the
correlation of mothers’ and (adult) sons’ heights is 0.5, then her son’s predicted
height is 5 inches taller than the average for men. He is expected to be taller than
average, but not so much taller—thus a “regression” (in the nonstatistical sense)
to the average.

A similar calculation can be performed for any pair of variables that are not
perfectly correlated. For example, let xi and yi be the number of games won by
baseball team i in two successive seasons. They will not be correlated 100%; thus,
we would expect the teams that did the best in season 1 (that is, with highest
values of x) to do not as well in season 2 (that is, with values of y that are closer
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to the average for all the teams). Similarly, we would expect a team with a poor
record in season 1 to improve in season 2.

A naive interpretation of regression to the mean is that heights, or baseball
records, or other variable phenomena necessarily become more and more “average”
over time. This view is mistaken because it ignores the error in the regression
predicting y from x. For any data point xi, the point prediction for its yi will be
regressed toward the mean, but the actual yi that is observed will not be exactly
where it is predicted. Some points end up falling closer to the mean and some fall
further. This can be seen in Figure 4.2b.

4.4 Logarithmic transformations

When additivity and linearity (see Section 3.6) are not reasonable assumptions, a
nonlinear transformation can sometimes remedy the situation. It commonly makes
sense to take the logarithm of outcomes that are all-positive. For outcome variables,
this becomes clear when we think about making predictions on the original scale.
The regression model imposes no constraints that would force these predictions to
be positive as well. However, if we take the logarithm of the variable, run the model,
make predictions on the log scale, and then transform back (by exponentiating),
the resulting predictions are necessarily positive because for any real a, exp(a) > 0.

Perhaps more importantly, a linear model on the logarithmic scale corresponds
to a multiplicative model on the original scale. Consider the linear regression model

log yi = b0 + b1Xi1 + b2Xi2 + · · · + ϵi

Exponentiating both sides yields

yi = eb0+b1Xi1+b2Xi2+···+ϵi

= B0 · BXi1
1 · BXi2

2 · · ·Ei

where B0 = eb0 , B1 = eb1 , B2 = eb2 , . . . are exponentiated regression coefficients
(and thus are positive), and Ei = eϵi is the exponentiated error term (also pos-
itive). On the scale of the original data yi, the predictors Xi1, Xi2, . . . come in
multiplicatively.

Height and earnings example

We illustrate logarithmic regression by considering models predicting earnings from
height. Expression (4.1) on page 53 shows a linear regression of earnings on height.
However, it really makes more sense to model earnings on the logarithmic scale
(our model here excludes those people who reported zero earnings). We can fit a
regression to log earnings and then take the exponential to get predictions on the
original scale.
Direct interpretation of small coefficients on the log scale. We take the logarithm
of earnings and regress on height,

R codelog.earn <- log (earn)
earn.logmodel.1 <- lm (log.earn ~ height)

display (earn.logmodel.1)

yielding the following estimate:

R outputlm(formula = log.earn ~ height)
coef.est coef.se

(Intercept) 5.74 0.45
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Log regression plotted on log scale Log regression plotted on original scale

Figure 4.3 Plot of regression of earnings on height, with solid line showing the fitted log
regression model, log(earnings) = 5.78 + 0.06 · height, plotted on the logarithmic and un-
transformed scales. Compare to the linear model (Figure 4.1a).

scatterplot!data and regression lines superimposed
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Figure 4.4 Interpretation of exponentiated coefficients in a logarithmic regression model
as relative difference (curved upper line), and the approximation exp(x) = 1 + x, which is
valid for small coefficients x (straight line).

height 0.06 0.01

n = 1192, k = 2
residual sd = 0.89, R-Squared = 0.06

The estimated coefficient β1 = 0.06 implies that a difference of 1 inch in height
corresponds to an expected positive difference of 0.06 in log(earnings), so that
earnings are multiplied by exp(0.06). But exp(0.06) ≈ 1.06 (more precisely, it is
1.062). Thus, a difference of 1 in the predictor corresponds to an expected positive
difference of about 6% in the outcome variable. Similarly, if β1 were −0.06, then
a positive difference of 1 inch of height would correspond to an expected negative
difference of about 6% in earnings.

This correspondence does grow weaker as the magnitude of the coefficient in-
creases. Figure 4.4 displays the deterioration of the correspondence as the coefficient
size increases. The plot is restricted to coefficients in the range (−1, 1) because, on
the log scale, regression coefficients are typically (though not always) less than 1.
A coefficient of 1 on the log scale implies that a change of one unit in the predictor
is associated with a change of exp(1) = 2.7 in the outcome, and if predictors are
parameterized in a reasonable way, it is unusual to see effects of this magnitude.

Why we use natural log rather than log-base-10

We prefer natural logs (that is, logarithms base e) because, as described above,
coefficients on the natural-log scale are directly interpretable as approximate pro-
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portional differences: with a coefficient of 0.06, a difference of 1 in x corresponds to
an approximate 6% difference in y, and so forth.2

Another approach is to take logarithms base 10, which we write as log10. The
connection between the two different scales is that log10(x) = log(x)/ log(10) =
log(x)/2.30. The advantage of log10 is that the predicted values themselves are easier
to interpret; for example, when considering the earnings regressions, log10(10,000) =
4 and log10(100,000) = 5, and with some experience we can also quickly read off
intermediate values—for example, if log10(earnings) = 4.5, then earnings ≈ 30,000.

The disadvantage of log10 is that the resulting coefficients are harder to interpret.
For example, if we define

R codelog10.earn <- log10 (earn)

the regression on height looks like

R outputlm(formula = log10.earn ~ height)

coef.est coef.se
(Intercept) 2.493 0.197
height 0.026 0.003

n = 1187, k = 2
residual sd = 0.388, R-Squared = 0.06

The coefficient of 0.026 tells us that a difference of 1 inch in height corresponds
to a difference of 0.026 in log10(earnings); that is, a multiplicative difference of
100.026 = 1.062. This is the same 6% change as before, but it cannot be seen by
simply looking at the coefficient as could be done on the natural-log scale.

Building a regression model on the log scale

Adding another predictor. Each inch of height corresponds to a 6% increase in
earnings—that seems like a lot! But men are mostly taller than women and also tend
to have higher earnings. Perhaps the 6% predictive difference can be “explained” by
differences between the sexes. Do taller people earn more, on average, than shorter
people of the same sex? We can answer this question by including sex into the
regression model—in this case, a predictor called male that equals 1 for men and 0
for women:

R outputlm(formula = log.earn ~ height + male)
coef.est coef.se

(Intercept) 8.15 0.60
height 0.02 0.01
male 0.42 0.07

n = 1192, k = 3
residual sd = 0.88, R-Squared = 0.09

After controlling for sex, an inch of height corresponds to estimated predictive
difference of 2%: under this model, two persons of the same sex but differing by 1
inch in height will differ, on average, by 2% in earnings. The predictive comparison
of sex, however, is huge: comparing a man and a woman of the same height, the
man’s earnings are exp(0.42) = 1.52 times the woman’s; that is, 52% more. (We
cannot simply convert the 0.42 to 42% because this coefficient is not so close to
zero; see Figure 4.4.)

2 Natural log is sometimes written as “ln” or “loge” but we simply write “log” since this is our
default.
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Naming inputs. Incidentally, we named this new input variable male so that it
could be immediately interpreted. Had we named it sex, for example, we would
always have to go back to the coding to check whether 0 and 1 referred to men and
women, or vice versa.3

Checking statistical significance. The difference between the sexes is huge and well
known, but the height comparison is interesting too—a 2% difference, for earnings
of $50,000, comes to a nontrivial $1000 per inch. To judge statistical significance,
we can check to see if the estimated coefficient is more than 2 standard errors from
zero. In this case, with an estimate of 0.02 and standard error of 0.01, we would
need to display to three decimal places to be sure (using the digits option in the
display() function):

R output lm(formula = log.earn ~ height + male)
coef.est coef.se

(Intercept) 8.153 0.603

height 0.021 0.009
male 0.423 0.072
n = 1192, k = 3

residual sd = 0.88, R-Squared = 0.09

The coefficient for height indeed is statistically significant. Another way to check
significance is to directly compute the 95% confidence interval based on the infer-
ential simulations, as we discuss in Section 7.2.
Residual standard deviation and R2. Finally, the regression model has a residual
standard deviation of 0.88, implying that approximately 68% of log earnings will
be within 0.88 of the predicted value. On the original scale, approximately 68% of
earnings will be within a factor of exp(0.88) = 2.4 of the prediction. For example,
a 70-inch person has predicted earnings of 8.153+0.021 · 70 = 9.623, with a predic-
tive standard deviation of approximately 0.88. Thus, there is an approximate 68%
chance that this person has log earnings in the range [9.623± 0.88] = [8.74, 10.50],
which corresponds to earnings in the range [exp(8.74), exp(10.50)] = [6000, 36000].
This very wide range tells us that the regression model does not predict earnings
well—it is not very impressive to have a prediction that can be wrong by a factor of
2.4—and this is also reflected in the R2, which is only 0.09, indicating that only 9%
of the variance in the data is explained by the regression model. This low R2 man-
ifests itself graphically in Figure 4.3, where the range of the regression predictions
is clearly much narrower than the range of the data.
Including an interaction. We now consider a model with an interaction between
height and sex, so that the predictive comparison for height can differ for men and
women:

R code earn.logmodel.3 <- lm (log.earn ~ height + male + height:male)

which yields

R output coef.est coef.se

(Intercept) 8.388 0.844
height 0.017 0.013
male -0.079 1.258

height:male 0.007 0.019
n = 1192, k = 4
residual sd = 0.88, R-Squared = 0.09

3 Another approach would be to consider sex variable as a factor with two named levels, male and
female; see page 68. Our point here is that, if the variable is coded numerically, it is convenient
to give it the name male corresponding to the coding of 1.
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That is,

log(earnings) = 8.4 + 0.017 · height − 0.079 · male + 0.007 · height · male. (4.2)

We shall interpret each of the four coefficients in this model.
• The intercept is the predicted log earnings if height and male both equal zero.

Because heights are never close to zero, the intercept has no direct interpretation.

• The coefficient for height is the predicted difference in log earnings correspond-
ing to a 1-inch difference in height, if male equals zero. Thus, the estimated
predictive difference per inch of height is 1.7% for women. The estimate is less
than 2 standard errors from zero, indicating that the data are consistent with a
zero or negative predictive difference also.

• The coefficient for male is the predicted difference in log earnings between women
and men, if height equals 0. Heights are never close to zero, and so the coefficient
for male has no direct interpretation in this model. (We have already encountered
this problem; for example, consider the difference between the intercepts of the
two lines in Figure 3.4b on page 35.)

• The coefficient for height:male is the difference in slopes of the lines predict-
ing log earnings on height, comparing men to women. Thus, an inch of height
corresponds to 0.7% more of an increase in earnings among men than among
women, and the estimated predictive difference per inch of height among men is
1.7% + 0.7% = 2.4%.

The interaction coefficient is not statistically significant, but it is plausible that the
correlation between height and earnings is stronger for men and women, and so we
keep it in the model, following general principles we discuss more fully in Section
4.6.
Linear transformation to make coefficients more interpretable. We can make the
parameters in the interaction model clearer to interpret by rescaling the height
predictor to have a mean of 0 and standard deviation 1:

R codez.height <- (height - mean(height))/sd(height)

For these data, mean(height) and sd(height) are 66.9 inches and 3.8 inches,
respectively. Fitting the model to z.height, male, and their interaction yields

R outputlm(formula = log.earn ~ z.height + male + z.height:male)

coef.est coef.se
(Intercept) 9.53 0.05
z.height 0.07 0.05

male 0.42 0.07
z.height:male 0.03 0.07
n = 1192, k = 4

residual sd = 0.88, R-Squared = 0.09

We can now interpret all four of the coefficients:
• The intercept is the predicted log earnings if z.height and male both equal zero.

Thus, a 66.9-inch tall woman is predicted to have log earnings of 9.53, and thus
earnings of exp(9.53) = 14000.

• The coefficient for z.height is the predicted difference in log earnings corre-
sponding to a 1 standard-deviation difference in height, if male equals zero.
Thus, the estimated predictive difference for a 3.8-inch increase in height is 7%
for women.
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• The coefficient for male is the predicted difference in log earnings between women
and men, if z.height equals 0. Thus, a 66.9-inch man is predicted to have log
earnings that are 0.42 higher than that of a 66.9-inch woman. This corresponds to
a ratio of exp(0.42) = 1.52, so the man is predicted to have 52% higher earnings
than the woman.

• The coefficient for z.height:male is the difference in slopes between the pre-
dictive differences for height among women and men. Thus, a 3.8-inch difference
of height corresponds to 3% more of an increase in earnings for men than for
women, and the estimated predictive comparison among men is 7%+3% = 10%.

One might also consider centering the predictor for sex, but here it is easy enough
to interpret male = 0, which corresponds to the baseline category (in this case,
women).

Further difficulties in interpretation

For a glimpse into yet another difficulty in interpreting regression coefficients, con-
sider the simpler log earnings regression without the interaction term. The predic-
tive interpretation of the height coefficient is simple enough: comparing two adults
of the same sex, the taller person will be expected to earn 2% more per inch of
height (see the model on page 61). This seems to be a reasonable comparison.

For the coefficient for sex, we would say: comparing two adults of the same height
but different sex, the man will be expected to earn 52% more. But is this a relevant
comparison? For example, if we are comparing a 66-inch woman to a 66-inch man,
then we are comparing a tall woman to a short man. So, in some sense, they do not
differ only in sex. Perhaps a more reasonable comparison would be of an “average
woman” to an “average man.”

The ultimate solution to this sort of problem must depend on why the model is
being fit in the first place. For now we shall focus on the technical issues of fitting
reasonable models to data. We return to issues of interpretation in Chapters 9 and
10.

Log-log model: transforming the input and outcome variables

If the log transformation is applied to an input variable as well as the outcome,
the coefficient can be interpreted as the expected proportional change in y per
proportional change in x. For example:

R output lm(formula = log.earn ~ log.height + male)

coef.est coef.se
(Intercept) 3.62 2.60
log.height 1.41 0.62

male 0.42 0.07
n = 1192, k = 3
residual sd = 0.88, R-Squared = 0.09

For each 1% difference in height, the predicted difference in earnings is 1.41%. The
other input, male, is categorical so it does not make sense to take its logarithm.

In economics, the coefficient in a log-log model is sometimes called an “elasticity”;
see Exercise 4.6 for an example.
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Taking logarithms even when not necessary

If a variable has a narrow dynamic range (that is, if the ratio between the high
and low values is close to 1), then it will not make much of a difference in fit if
the regression is on the logarithmic or the original scale. For example, the standard
deviation of log.height in our survey data is 0.06, meaning that heights in the
data vary by only approximately a factor of 6%.

In such a situation, it might seem to make sense to stay on the original scale for
reasons of simplicity. However, the logarithmic transformation can make sense even
here, because coefficients are often more easily understood on the log scale. The
choice of scale comes down to interpretability: whether it is easier to understand the
model as proportional increase in earnings per inch, or per proportional increase in
height.

For an input with a larger amount of relative variation (for example, heights of
children, or weights of animals), it would make sense to work with its logarithm
immediately, both as an aid in interpretation and likely an improvement in fit too.

4.5 Other transformations

Square root transformations

The square root is sometimes useful for compressing high values more mildly than
is done by the logarithm. Consider again our height and earnings example.

Fitting a linear model to the raw, untransformed scale seemed inappropriate.
Expressed in a different way than before, we would expect the differences between
people earning nothing versus those earning $10,000 to be far greater than the
differences between people earning, say, $80,000 versus $90,000. But under the
linear model, these are all equal increments (as in model (4.1)), where an extra
inch is worth $1300 more in earnings at all levels.

On the other hand, the log transformation seems too severe with these data.
With logarithms, the differences between populations earning $5000 versus $10,000
is equivalent to the differences between those earning $40,000 versus those earning
$80,000. On the square root scale, however, the differences between the 0 earnings
and $10,000 earnings groups are about the same as comparisons between $10,000
and $40,000 or between $40,000 and $90,000. (These move from 0 to 100, 200, and
300 on the square root scale.) See Chapter 25 for more on this example.

Unfortunately, models on the square root scale lack the clean interpretation of the
original-scale and log-transformed models. For one thing, large negative predictions
on this scale get squared and become large positive values on the original scale,
thus introducing a nonmonotonicity in the model. We are more likely to use the
square root model for prediction than with models whose coefficients we want to
understand.

Idiosyncratic transformations

Sometimes it is useful to develop transformations tailored for specific problems.
For example, with the original height-earnings data it would have not been possible
to simply take the logarithm of earnings as many observations had zero values.
Instead, a model can be constructed in two steps: (1) model the probability that
earnings exceed zero (for example, using a logistic regression; see Chapter 5); (2)
fit a linear regression, conditional on earnings being positive, which is what we did
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Figure 4.5 Histogram of handedness scores of a sample of students. Scores range from −1
(completely left-handed) to +1 (completely right-handed) and are based on the responses
to ten questions such as “Which hand do you write with?” and “Which hand do you use
to hold a spoon?” The continuous range of responses shows the limitations of treating
handedness as a dichotomous variable. From Gelman and Nolan (2002).

in the example above. One could also model total income, but economists are often
interested in modeling earnings alone.

In any case, plots and simulation should definitely be used to summarize infer-
ences, since the coefficients of the two parts of the model combine nonlinearly in
their joint prediction of earnings. We discuss this sort of model further in Sections
6.7 and 7.4.

What sort of transformed scale would be appropriate for a variable such as “as-
sets” that can be negative, positive, or zero? One possibility is a discrete coding
that compresses the high range, for example, 0 for assets in the range [−$100, $100],
1 for assets between $100 and $1000, 2 for assets between $1000 and $10,000, and so
forth, and −1 for assets between −$100 and −$10,000, and so forth. Such a mapping
could be expressed more fully as a continuous transformation, but for explanatory
purposes it can be convenient to use a discrete scale.

Using continuous rather than discrete predictors

Many variables that appear binary or discrete can usefully be viewed as continuous.
For example, rather than define “handedness” as −1 for left-handers and +1 for
right-handers, one can use a standard ten-question handedness scale that gives an
essentially continuous scale from −1 to 1 (see Figure 4.5).

We avoid discretizing continuous variables (except as a way of simplifying a
complicated transformation, as described previously, or to model nonlinearity, as
described later). A common mistake is to take a numerical measure and replace it
with a binary “pass/fail” score. For example, suppose we tried to predict election
winners, rather than continuous votes. Such a model would not work well, as it
would discard much of the information in the data (for example, the distinction be-
tween a candidate receiving 51% or 65% of the vote). The model would be “wasting
its effort” in the hopeless task of predicting the winner in very close cases. Even
if our only goal is to predict the winners, we are better off predicting continuous
vote shares and then transforming them into predictions about winners, as in our
example with congressional elections in Section 7.3.

Using discrete rather than continuous predictors

In some cases, however, it is appropriate to discretize a continuous variable if a
simple monotonic or quadratic relation does not seem appropriate. For example, in
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modeling political preferences, it can make sense to include age with four indicator
variables: 18–29, 29–44, 45–64, and 65+, to allow for different sorts of generational
patterns. Furthermore, variables that assign numbers to categories that are ordered
but for which the gaps between neighboring categories are not always equivalent
are often good candidates for discretization.

As an example, Chapter 3 described models for children’s test scores given in-
formation about their mothers. Another input variable that can be used in these
models is maternal employment, which is defined on a four-point ordered scale:
• mom.work = 1: mother did not work in first three years of child’s life
• mom.work = 2: mother worked in second or third year of child’s life
• mom.work = 3: mother worked part-time in first year of child’s life
• mom.work = 4: mother worked full-time in first year of child’s life.
Fitting a simple model using discrete predictors yields

R outputlm(formula = kid.score ~ as.factor(mom.work), data = kid.iq)

coef.est coef.se
(Intercept) 82.0 2.3
as.factor(mom.work)2 3.8 3.1

as.factor(mom.work)3 11.5 3.6
as.factor(mom.work)4 5.2 2.7
n = 434, k = 4

residual sd = 20.2, R-Squared = 0.02

This parameterization of the model allows for different averages for the children
of mothers corresponding to each category of maternal employment. The “baseline”
category (mom.work = 1) corresponds to children whose mothers do not go back to
work at all in the first three years after the child is born; the average test score for
these children is estimated by the intercept, 82.0. The average test scores for the
children in the other categories is found by adding the corresponding coefficient to
this baseline average. This parameterization allows us to see that the children of
mothers who work part-time in the first year after the child is born achieve the
highest average test scores, 82.0 + 11.5. These families also tend to be the most
advantaged in terms of many other sociodemographic characteristics as well, so a
causal interpretation is not warranted.

Index and indicator variables

Index variables divide a population into categories. For example:
• male = 1 for males and 0 for females
• age = 1 for ages 18–29, 2 for ages 30–44, 3 for ages 45–64, 4 for ages 65+
• state = 1 for Alabama, . . ., 50 for Wyoming
• county indexes for the 3082 counties in the United States.
Indicator variables are 0/1 predictors based on index variables. For example:
• sex.1 = 1 for females and 0 otherwise

sex.2 = 1 for males and 0 otherwise
• age.1 = 1 for ages 18–29 and 0 otherwise

age.2 = 1 for ages 30–44 and 0 otherwise
age.3 = 1 for ages 45–64 and 0 otherwise
age.4 = 1 for ages 65+ and 0 otherwise
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• 50 indicators for state
• 3082 indicators for county.

As demonstrated in the previous section, including these variables as regression
predictors allows for different means for the populations corresponding to each of
the categories delineated by the variable.
When to use index or indicator variables. When an input has only two levels, we
prefer to code it with a single variable and name it appropriately; for example, as
discussed earlier with the earnings example, the name male is more descriptive than
sex.1 and sex.2.

R also allows variables to be included as factors with named levels; for example,
sex would have the levels male and female. In this book, however, we restrict
ourselves to numerically defined variables, which is convenient for mathematical
notation and also when setting up models in Bugs.

When an input has multiple levels, we prefer to create an index variable (thus,
for example, age, which can take on the levels 1, 2, 3, 4), which can then be given
indicators if necessary. As discussed in Chapter 11, multilevel modeling offers a
general approach to such categorical predictors.

Identifiability

A model is said to be nonidentifiable if it contains parameters that cannot be
estimated uniquely—or, to put it another way, that have standard errors of infinity.
The offending parameters are called nonidentified. The most familiar and important
example of nonidentifiability arises from collinearity of regression predictors. A set
of predictors is collinear if there is a linear combination of them that equals 0 for
all the data.

If an index variable takes on J values, then there are J associated indicator
variables. A classical regression can include only J−1 of any set of indicators—if
all J were included, they would be collinear with the constant term. (You could
include a full set of J by excluding the constant term, but then the same problem
would arise if you wanted to include a new set of indicators. For example, you could
not include both of the sex categories and all four of the age categories. It is simpler
just to keep the constant term and all but one of each set of indicators.)

For each index variable, the indicator that is excluded from the regression is
known as the default, reference, or baseline condition because it is the implied
category if all the J−1 indicators are set to zero. The default in R is to set the first
level of a factor as the reference condition; other options include using the last level
as baseline, selecting the baseline, and constraining the coefficients to sum to zero.
There is some discussion in the regression literature on how best to set reference
conditions, but we will not worry about it, because in multilevel models we can
include all J indicator variables at once.

In practice, you will know that a regression is nonidentified because your com-
puter program will give an error or return “NA” for a coefficient estimate (or it will
be dropped by the program from the analysis and nothing will be reported except
that it has been removed).

4.6 Building regression models for prediction

A model must be created before it can be fit and checked, and yet we put “model
building” near the end of this chapter. Why? It is best to have a theoretical model
laid out before any data analyses begin. But in practical data analysis it is usually
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easiest to start with a simple model and then build in additional complexity, taking
care to check for problems along the way.

There are typically many reasonable ways in which a model can be constructed.
Models may differ depending on the inferential goals or the way the data were
collected. Key choices include how the input variables should be combined in cre-
ating predictors, and which predictors should be included in the model. In classical
regression, these are huge issues, because if you include too many predictors in a
model, the parameter estimates become so variable as to be useless. Some of these
issues are less important in multilevel regression but they certainly do not disappear
completely.

This section focuses on the problem of building models for prediction. Build-
ing models that can yield causal inferences is a related but separate topic that is
addressed in Chapters 9 and 10.

General principles

Our general principles for building regression models for prediction are as follows:

1. Include all input variables that, for substantive reasons, might be expected to
be important in predicting the outcome.

2. It is not always necessary to include these inputs as separate predictors—for
example, sometimes several inputs can be averaged or summed to create a “total
score” that can be used as a single predictor in the model.

3. For inputs that have large effects, consider including their interactions as well.

4. We suggest the following strategy for decisions regarding whether to exclude a
variable from a prediction model based on expected sign and statistical signifi-
cance (typically measured at the 5% level; that is, a coefficient is “statistically
significant” if its estimate is more than 2 standard errors from zero):

(a) If a predictor is not statistically significant and has the expected sign, it is
generally fine to keep it in. It may not help predictions dramatically but is
also probably not hurting them.

(b) If a predictor is not statistically significant and does not have the expected
sign (for example, incumbency having a negative effect on vote share), consider
removing it from the model (that is, setting its coefficient to zero).

(c) If a predictor is statistically significant and does not have the expected sign,
then think hard if it makes sense. (For example, perhaps this is a country such
as India in which incumbents are generally unpopular; see Linden, 2006.) Try
to gather data on potential lurking variables and include them in the analysis.

(d) If a predictor is statistically significant and has the expected sign, then by all
means keep it in the model.

These strategies do not completely solve our problems but they help keep us from
making mistakes such as discarding important information. They are predicated on
having thought hard about these relationships before fitting the model. It’s always
easier to justify a coefficient’s sign after the fact than to think hard ahead of time
about what we expect. On the other hand, an explanation that is determined after
running the model can still be valid. We should be able to adjust our theories in
light of new information.
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Example: predicting the yields of mesquite bushes

We illustrate some ideas of model checking with a real-data example that is nonethe-
less somewhat artificial in being presented in isolation from its applied context.
Partly because this example is not a “success story” and our results are inconclu-
sive, it represents the sort of analysis a student might perform in exploring a new
dataset.

Data were collected in order to develop a method of estimating the total produc-
tion (biomass) of mesquite leaves using easily measured parameters of the plant, be-
fore actual harvesting takes place. Two separate sets of measurements were taken,
one on a group of 26 mesquite bushes and the other on a different group of 20
mesquite bushes measured at a different time of year. All the data were obtained in
the same geographical location (ranch), but neither constituted a strictly random
sample.

The outcome variable is the total weight (in grams) of photosynthetic material
as derived from actual harvesting of the bush. The input variables are:

diam1: diameter of the canopy (the leafy area of the bush)
in meters, measured along the longer axis of the bush

diam2: canopy diameter measured along the shorter axis
canopy.height: height of the canopy
total.height: total height of the bush
density: plant unit density (# of primary stems per plant unit)
group: group of measurements (0 for the first group,

1 for the second group)

It is reasonable to predict the leaf weight using some sort of regression model.
Many formulations are possible. The simplest approach is to regress weight on all
of the predictors, yielding the estimates:

R output lm(formula = weight ~ diam1 + diam2 + canopy.height + total.height +
density + group, data = mesquite)

coef.est coef.se
(Intercept) -729 147
diam1 190 113
diam2 371 124

canopy.height 356 210
total.height -102 186
density 131 34

group -363 100
n = 46, k = 7
residual sd = 269, R-Squared = 0.85

To get a sense of the importance of each predictor, it is useful to know the range
of each variable:

R output min q25 median q75 max IQR

diam1 0.8 1.4 2.0 2.5 5.2 1.1
diam2 0.4 1.0 1.5 1.9 4.0 0.9

canopy.height 0.5 0.9 1.1 1.3 2.5 0.4
total.height 0.6 1.2 1.5 1.7 3.0 0.5
density 1.0 1.0 1.0 2.0 9.0 1.0

group 0.0 0.0 0.0 1.0 1.0 1.0

weight 60 220 360 690 4050 470

“IQR” in the last column refers to the interquartile range—the difference between
the 75th and 25th percentile points of each variable.
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But perhaps it is more reasonable to fit on the logarithmic scale, so that effects
are multiplicative rather than additive:

R outputlm(formula = log(weight) ~ log(diam1) + log(diam2) + log(canopy.height) +
log(total.height) + log(density) + group, data = mesquite)

coef.est coef.se IQR of predictor
(Intercept) 5.35 0.17 --
log(diam1) 0.39 0.28 0.6

log(diam2) 1.15 0.21 0.6
log(canopy.height) 0.37 0.28 0.4
log(total.height) 0.39 0.31 0.4
log(density) 0.11 0.12 0.3

group -0.58 0.13 1.0
n = 46, k = 7
residual sd = 0.33, R-Squared = 0.89

Instead of, “each meter difference in canopy height is associated with an addi-
tional 356 grams of leaf weight,” we have, “a difference of x% in canopy height
is associated with an (approximate) positive difference of 0.37x% in leaf weight”
(evaluated at the same levels of all other variables across comparisons).

So far we have been throwing all the predictors directly into the model. A more
“minimalist” approach is to try to come up with a simple model that makes sense.
Thinking geometrically, we can predict leaf weight from the volume of the leaf
canopy, which we shall roughly approximate as

canopy.volume = diam1 · diam2 · canopy.height.

This model is an oversimplification: the leaves are mostly on the surface of a bush,
not in its interior, and so some measure of surface area is perhaps more appropriate.
We shall return to this point shortly.

It still makes sense to work on the logarithmic scale:

R outputlm(formula = log(weight) ~ log(canopy.volume))

coef.est coef.se
(Intercept) 5.17 0.08

log(canopy.volume) 0.72 0.05
n = 46, k = 2
residual sd = 0.41, R-Squared = 0.80

Thus, leaf weight is approximately proportional to canopy.volume to the 0.72
power. It is perhaps surprising that this power is not closer to 1. The usual expla-
nation for this is that there is variation in canopy.volume that is unrelated to the
weight of the leaves, and this tends to attenuate the regression coefficient—that is,
to decrease its absolute value from the “natural” value of 1 to something lower.
Similarly, regressions of “after” versus “before” typically have slopes of less than
1. (For another example, Section 7.3 has an example of forecasting congressional
elections in which the vote in the previous election has a coefficient of only 0.58.)

The regression with only canopy.volume is satisfyingly simple, with an impres-
sive R-squared of 80%. However, the predictions are still much worse than the model
with all the predictors. Perhaps we should go back and put in the other predictors.
We shall define:

canopy.area = diam1 · diam2
canopy.shape = diam1/diam2.

The set (canopy.volume, canopy.area, canopy.shape) is then just a different param-
eterization of the three canopy dimensions. Including them all in the model yields:
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R output lm(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +

log(canopy.shape) + log(total.height) + log(density) + group)
coef.est coef.se

(Intercept) 5.35 0.17
log(canopy.volume) 0.37 0.28
log(canopy.area) 0.40 0.29

log(canopy.shape) -0.38 0.23
log(total.height) 0.39 0.31
log(density) 0.11 0.12

group -0.58 0.13
n = 46, k = 7
residual sd = 0.33, R-Squared = 0.89

This fit is identical to that of the earlier log-scale model (just a linear transfor-
mation of the predictors), but to us these coefficient estimates are more directly
interpretable:
• Canopy volume and area are both positively associated with weight. Neither is

statistically significant, but we keep them in because they both make sense: (1)
a larger-volume canopy should have more leaves, and (2) conditional on volume,
a canopy with larger cross-sectional area should have more exposure to the sun.

• The negative coefficient of canopy.shape implies that bushes that are more
circular in cross section have more leaf weight (after controlling for volume and
area). It is not clear whether we should “believe” this. The coefficient is not
statistically significant; we could keep this predictor in the model or leave it out.

• Total height is positively associated with weight, which could make sense if the
bushes are planted close together—taller bushes get more sun. The coefficient is
not statistically significant, but it seems to make sense to “believe” it and leave
it in.

• It is not clear how to interpret the coefficient for density. Since it is not statis-
tically significant, maybe we can exclude it.

• For whatever reason, the coefficient for group is large and statistically significant,
so we must keep it in. It would be a good idea to learn how the two groups differ
so that a more relevant measurement could be included for which group is a
proxy.

This leaves us with a model such as

R output lm(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +

group)
coef.est coef.se

(Intercept) 5.22 0.09

log(canopy.volume) 0.61 0.19
log(canopy.area) 0.29 0.24
group -0.53 0.12

n = 46, k = 4
residual sd = 0.34, R-Squared = 0.87

or

R output lm(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +

log(canopy.shape) + log(total.height) + group)
coef.est coef.se

(Intercept) 5.31 0.16

log(canopy.volume) 0.38 0.28
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log(canopy.area) 0.41 0.29
log(canopy.shape) -0.32 0.22

log(total.height) 0.42 0.31
group -0.54 0.12
n = 46, k = 6
residual sd = 0.33, R-Squared = 0.88

We want to include both volume and area in the model, since for geometrical reasons
we expect both to be positively predictive of leaf volume. It would also make sense
to look at some residual plots to look for any patterns in the data beyond what has
been fitted by the model.

Finally, it would seem like a good idea to include interactions of group with
the other predictors. Unfortunately, with only 46 data points, it turns out to be
impossible to estimate these interactions accurately: none of them are statistically
significant.

To conclude this example: we have had some success in transforming the outcome
and input variables to obtain a reasonable predictive model. However, we do not
have any clean way of choosing among the models (or combining them). We also
do not have any easy way of choosing between the linear and log-transformation
models, or bridging the gap between them. For this problem, the log model seems
to make much more sense, but we would also like a data-based reason to prefer it,
if it is indeed preferable.

4.7 Fitting a series of regressions

It is common to fit a regression model repeatedly, either for different datasets or to
subsets of an existing dataset. For example, one could estimate the relation between
height and earnings using surveys from several years, or from several countries, or
within different regions or states within the United States.

As discussed in Part 2 of this book, multilevel modeling is a way to estimate
a regression repeatedly, partially pooling information from the different fits. Here
we consider the more informal procedure of estimating the regression separately—
with no pooling between years or groups—and then displaying all these estimates
together, which can be considered as an informal precursor to multilevel modeling.4

Predicting party identification

Political scientists have long been interested in party identification and its changes
over time. We illustrate here with a series of cross-sectional regressions modeling
party identification given political ideology and demographic variables.

We use the National Election Study, which asks about party identification on a 1–
7 scale (1= strong Democrat, 2=Democrat, 3=weak Democrat, 4= independent,
. . . , 7 = strong Republican), which we treat as a continuous variable. We include
the following predictors: political ideology (1 = strong liberal, 2 = liberal, . . . , 7 =
strong conservative), ethnicity (0=white, 1=black, 0.5=other), age (as categories:
18–29, 30–44, 45–64, and 65+ years, with the lowest age category as a baseline),
education (1 = no high school, 2 = high school graduate, 3 = some college, 4 =

4 The method of repeated modeling, followed by time-series plots of estimates, is sometimes called
the “secret weapon” because it is so easy and powerful but yet is rarely used as a data-analytic
tool. We suspect that one reason for its rarity of use is that, once one acknowledges the time-
series structure of a dataset, it is natural to want to take the next step and model that directly.
In practice, however, there is a broad range of problems for which a cross-sectional analysis is
informative, and for which a time-series display is appropriate to give a sense of trends.
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Figure 4.6 Estimated coefficients (and 50% intervals) for the regression of party identifi-
cation on political ideology, ethnicity, and other predictors, as fit separately to poll data
from each presidential election campaign from 1976 through 2000. The plots are on differ-
ent scales, with the input variables ordered roughly in declining order of the magnitudes
of their coefficients. The set of plots illustrates the display of inferences from a series of
regressions.

college graduate), sex (0=male, 1=female), and income (1=0–16th percentile, 2=
17–33rd percentile, 3=34–67th percentile, 4=68–95th percentile, 5=96–100th per-
centile).

Figure 4.6 shows the estimated coefficients tracked over time. Ideology and ethnic-
ity are the most important,5 and they remain fairly stable over time. The predictive
differences for age and sex change fairly dramatically during the thirty-year period.

4.8 Bibliographic note

For additional reading on transformations, see Atkinson (1985), Mosteller and
Tukey (1977), Box and Cox (1964), and Carroll and Ruppert (1981). Bring (1994)
has a thoroough discussion on standardizing regression coefficients; see also Blalock
(1961) and Greenland, Schlessman, and Criqui (1986). Harrell (2001) discusses
strategies for regression modeling.

For more on the earnings and height example, see Persico, Postlewaite, and Sil-
verman (2004) and Gelman and Nolan (2002). For more on the handedness example,
see Gelman and Nolan (2002, sections 2.5 and 3.3.2). The historical background of
regression to the mean is covered by Stigler (1986), and its connections to multilevel
modeling are discussed by Stigler (1983).

The mesquite bushes example in Section 4.6 comes from an exam problem from
the 1980s; we have not been able to track down the original data. For more on the
ideology example in Section 4.7, see Bafumi (2005).

4.9 Exercises

1. Logarithmic transformation and regression: consider the following regression:

log(weight) = −3.5 + 2.0 log(height) + error,

5 Ideology is on a seven-point scale, so that its coefficients must be multiplied by 4 to get the
expected change when comparing a liberal (ideology=2) to a conservative (ideology=6).
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with errors that have standard deviation 0.25. Weights are in pounds and heights
are in inches.

(a) Fill in the blanks: approximately 68% of the persons will have weights within
a factor of and of their predicted values from the regression.

(b) Draw the regression line and scatterplot of log(weight) versus log(height) that
make sense and are consistent with the fitted model. Be sure to label the axes
of your graph.

2. The folder earnings has data from the Work, Family, and Well-Being Survey
(Ross, 1990). Pull out the data on earnings, sex, height, and weight.

(a) In R, check the dataset and clean any unusually coded data.
(b) Fit a linear regression model predicting earnings from height. What transfor-

mation should you perform in order to interpret the intercept from this model
as average earnings for people with average height?

(c) Fit some regression models with the goal of predicting earnings from some
combination of sex, height, and weight. Be sure to try various transformations
and interactions that might make sense. Choose your preferred model and
justify.

(d) Interpret all model coefficients.

3. Plotting linear and nonlinear regressions: we downloaded data with weight (in
pounds) and age (in years) from a random sample of American adults. We first
created new variables: age10 = age/10 and age10.sq = (age/10)2, and indicators
age18.29, age30.44, age45.64, and age65up for four age categories. We then
fit some regressions, with the following results:

R outputlm(formula = weight ~ age10)

coef.est coef.se
(Intercept) 161.0 7.3
age10 2.6 1.6

n = 2009, k = 2
residual sd = 119.7, R-Squared = 0.00

lm(formula = weight ~ age10 + age10.sq)
coef.est coef.se

(Intercept) 96.2 19.3

age10 33.6 8.7
age10.sq -3.2 0.9

n = 2009, k = 3

residual sd = 119.3, R-Squared = 0.01

lm(formula = weight ~ age30.44 + age45.64 + age65up)

coef.est coef.se
(Intercept) 157.2 5.4
age30.44TRUE 19.1 7.0

age45.64TRUE 27.2 7.6
age65upTRUE 8.5 8.7

n = 2009, k = 4

residual sd = 119.4, R-Squared = 0.01

(a) On a graph of weights versus age (that is, weight on y-axis, age on x-axis),
draw the fitted regression line from the first model.

(b) On the same graph, draw the fitted regression line from the second model.



76 LINEAR REGRESSION: BEFORE AND AFTER FITTING THE MODEL

(c) On another graph with the same axes and scale, draw the fitted regression
line from the third model. (It will be discontinuous.)

4. Logarithmic transformations: the folder pollution contains mortality rates and
various environmental factors from 60 U.S. metropolitan areas (see McDonald
and Schwing, 1973). For this exercise we shall model mortality rate given nitric
oxides, sulfur dioxide, and hydrocarbons as inputs. This model is an extreme
oversimplification as it combines all sources of mortality and does not adjust for
crucial factors such as age and smoking. We use it to illustrate log transforma-
tions in regression.

(a) Create a scatterplot of mortality rate versus level of nitric oxides. Do you
think linear regression will fit these data well? Fit the regression and evaluate
a residual plot from the regression.

(b) Find an appropriate transformation that will result in data more appropriate
for linear regression. Fit a regression to the transformed data and evaluate
the new residual plot.

(c) Interpret the slope coefficient from the model you chose in (b).
(d) Now fit a model predicting mortality rate using levels of nitric oxides, sulfur

dioxide, and hydrocarbons as inputs. Use appropriate transformations when
helpful. Plot the fitted regression model and interpret the coefficients.

(e) Cross-validate: fit the model you chose above to the first half of the data and
then predict for the second half. (You used all the data to construct the model
in (d), so this is not really cross-validation, but it gives a sense of how the
steps of cross-validation can be implemented.)

5. Special-purpose transformations: for a study of congressional elections, you would
like a measure of the relative amount of money raised by each of the two major-
party candidates in each district. Suppose that you know the amount of money
raised by each candidate; label these dollar values Di and Ri. You would like to
combine these into a single variable that can be included as an input variable
into a model predicting vote share for the Democrats.

(a) Discuss the advantages and disadvantages of the following measures:

• The simple difference, Di − Ri

• The ratio, Di/Ri

• The difference on the logarithmic scale, log Di − log Ri

• The relative proportion, Di/(Di + Ri).

(b) Propose an idiosyncratic transformation (as in the example on page 65) and
discuss the advantages and disadvantages of using it as a regression input.

6. An economist runs a regression examining the relations between the average price
of cigarettes, P , and the quantity purchased, Q, across a large sample of counties
in the United States, assuming the following functional form, log Q = α+β log P .
Suppose the estimate for β is 0.3. Interpret this coefficient.

7. Sequence of regressions: find a regression problem that is of interest to you and
can be performed repeatedly (for example, data from several years, or for several
countries). Perform a separate analysis for each year, or country, and display the
estimates in a plot as in Figure 4.6 on page 74.

8. Return to the teaching evaluations data from Exercise 3.5. Fit regression models
predicting evaluations given many of the inputs in the dataset. Consider interac-
tions, combinations of predictors, and transformations, as appropriate. Consider
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several models, discuss in detail the final model that you choose, and also explain
why you chose it rather than the others you had considered.


