
CHAPTER 3

Linear regression: the basics

Linear regression is a method that summarizes how the average values of a numerical
outcome variable vary over subpopulations defined by linear functions of predictors.
Introductory statistics and regression texts often focus on how regression can be
used to represent relationships between variables, rather than as a comparison of
average outcomes. By focusing on regression as a comparison of averages, we are
being explicit about its limitations for defining these relationships causally, an issue
to which we return in Chapter 9. Regression can be used to predict an outcome
given a linear function of these predictors, and regression coefficients can be thought
of as comparisons across predicted values or as comparisons among averages in the
data.

3.1 One predictor

We begin by understanding the coefficients without worrying about issues of esti-
mation and uncertainty. We shall fit a series of regressions predicting cognitive test
scores of three- and four-year-old children given characteristics of their mothers, us-
ing data from a survey of adult American women and their children (a subsample
from the National Longitudinal Survey of Youth).

For a binary predictor, the regression coefficient is the difference between the
averages of the two groups

We start by modeling the children’s test scores given an indicator for whether the
mother graduated from high school (coded as 1) or not (coded as 0). The fitted
model is

kid.score = 78 + 12 · mom.hs + error, (3.1)
but for now we focus on the deterministic part,

̂kid.score = 78 + 12 · mom.hs, (3.2)

where ̂kid.score denotes either predicted or expected test score given the mom.hs
predictor.

This model summarizes the difference in average test scores between the chil-
dren of mothers who completed high school and those with mothers who did not.
Figure 3.1 displays how the regression line runs through the mean of each subpop-
ulation.

The intercept, 78, is the average (or predicted) score for children whose mothers
did not complete high school. To see this algebraically, consider that to obtain
predicted scores for these children we would just plug 0 into this equation. To
obtain average test scores for children (or the predicted score for a single child)
whose mothers were high school graduates, we would just plug 1 into this equation
to obtain 78 + 12 · 1 = 91.

The difference between these two subpopulation means is equal to the coefficient
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Figure 3.1 Child’s test score plotted versus an indicator for whether mother completed
high school. Superimposed is the regression line, which runs through the average of each
subpopulation defined by maternal education level. The indicator variable for high school
completion has been jittered; that is, a random number has been added to each value so
that the points do not lie on top of each other.

on mom.hs. This coefficient tells us that children of mothers who have completed
high school score 12 points higher on average than children of mothers who have
not completed high school.

Regression with a continuous predictor

If we regress instead on a continuous predictor, mother’s score on an IQ test, the
fitted model is

kid.score = 26 + 0.6 · mom.iq + error, (3.3)
and is shown in Figure 3.2. We can think of the points on the line either as predicted
test scores for children at each of several maternal IQ levels, or average test scores
for subpopulations defined by these scores.

If we compare average child test scores for subpopulations that differ in maternal
IQ by 1 point, we expect to see that the group with higher maternal IQ achieves 0.6
points more on average. Perhaps a more interesting comparison would be between
groups of children whose mothers’ IQ differed by 10 points—these children would
be expected to have scores that differed by 6 points on average.

To understand the constant term in the regression we must consider a case with
zero values of all the other predictors. In this example, the intercept of 26 reflects
the predicted test scores for children whose mothers have IQ scores of zero. This is
not the most helpful quantity—we don’t observe any women with zero IQ. We will
discuss a simple transformation in the next section that gives the intercept a more
useful interpretation.

3.2 Multiple predictors

Regression coefficients are more complicated to interpret with multiple predictors
because the interpretation for any given coefficient is, in part, contingent on the
other variables in the model. Typical advice is to interpret each coefficient “with
all the other predictors held constant.” We illustrate with an example, followed by
an elaboration in which the simple interpretation of regression coefficients does not
work.

For instance, consider a linear regression predicting child test scores from mater-
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Figure 3.2 Child’s test score plotted versus maternal IQ with regression line superimposed.
Each point on the line can be conceived of either as a predicted child test score for children
with mothers who have the corresponding IQ, or as the average score for a subpopulation
of children with mothers with that IQ.
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Figure 3.3 Child’s test score plotted versus maternal IQ. Light dots represent children
whose mothers graduated from high school and dark dots represent children whose mothers
did not graduate from high school. Superimposed are the regression lines from the regression
of child’s test score on maternal IQ and maternal high school indicator (the darker line for
children whose mothers did not complete high school, the lighter line for children whose
mothers did complete high school).

nal education and maternal IQ. The fitted model is

kid.score = 26 + 6 · mom.hs + 0.6 · mom.iq + error, (3.4)

and is displayed in Figure 3.3. This model forces the slope of the regression of
child’s test score on mother’s IQ score to be the same for each maternal education
subgroup. The next section considers models in which the slopes of the two lines
differ. First, however, we interpret the coefficients in model (3.4):

1. The intercept. If a child had a mother with an IQ of 0 and who did not complete
high school (thus, mom.hs = 0), then we would predict this child’s test score to
be 26. This is not a useful prediction, since no mothers have IQs of 0.

2. The coefficient of maternal high school completion. Comparing children whose
mothers have the same IQ, but who differed in whether they completed high
school, the model predicts an expected difference of 6 in their test scores.

3. The coefficient of maternal IQ. Comparing children with the same value of
mom.hs, but whose mothers differ by 1 point in IQ, we would expect to see
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a difference of 0.6 points in the child’s test score (equivalently, a difference of 10
in mothers’ IQs corresponds to a difference of 6 points for their children).

It’s not always possible to change one predictor while holding all others constant

We interpret the regression slopes as comparisons of individuals that differ in one
predictor while being at the same levels of the other predictors. In some settings,
one can also imagine manipulating the predictors to change some or hold others
constant—but such an interpretation is not necessary. This becomes clearer when
we consider situations in which it is logically impossible to change the value of
one predictor while keeping the value of another constant. For example, if a model
includes both IQ and IQ2 as predictors, it does not make sense to consider changes in
IQ with IQ2 held constant. Or, as we discuss in the next section, if a model includes
mom.hs, mom.IQ, and their interaction, mom.hs * mom.IQ, it is not meaningful to
consider any of these three with the other two held constant.

Counterfactual and predictive interpretations

In the more general context of multiple linear regression, it pays to be more ex-
plicit about how we interpret coefficients in general. We distinguish between two
interpretations of regression coefficients.
• The predictive interpretation considers how the outcome variable differs, on aver-

age, when comparing two groups of units that differ by 1 in the relevant predictor
while being identical in all the other predictors. Under the linear model, the co-
efficient is the expected difference in y between these two units. This is the sort
of interpretation we have described thus far.

• The counterfactual interpretation is expressed in terms of changes within indi-
viduals, rather than comparisons between individuals. Here, the coefficient is the
expected change in y caused by adding 1 to the relevant predictor, while leaving
all the other predictors in the model unchanged. For example, “changing mater-
nal IQ from 100 to 101 would lead to an expected increase of 0.6 in child’s test
score.” This sort of interpretation arises in causal inference.
Most introductory statistics and regression texts warn against the latter interpre-

tation but then allow for similar interpretations such as “a change of 10 in maternal
IQ is associated with a change of 6 points in child’s score.” Thus, the counterfac-
tual interpretation is probably more familiar to you—and is sometimes easier to
understand. However, as we discuss in detail in Chapter 9, the counterfactual in-
terpretation can be inappropriate without making some strong assumptions.

3.3 Interactions

In model (3.4), the slope of the regression of child’s test score on mother’s IQ was
forced to be equal across subgroups defined by mother’s high school completion,
but inspection of the data in Figure 3.3 suggests that the slopes differ substantially.
A remedy for this is to include an interaction between mom.hs and mom.iq—that is,
a new predictor which is defined as the product of these two variables. This allows
the slope to vary across subgroups. The fitted model is

kid.score = −11 + 51 · mom.hs + 1.1 · mom.iq − 0.5 · mom.hs · mom.iq + error

and is displayed in Figure 3.4a, where we see the separate regression lines for each
subgroup defined by maternal education.
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Figure 3.4 (a) Regression lines of child’s test score on mother’s IQ with different symbols
for children of mothers who completed high school (light circles) and those whose mothers
did not complete high school (dark dots). The interaction allows for a different slope in
each group, with light and dark lines corresponding to the light and dark points. (b) Same
plot but with horizontal axis extended to zero to reveal the intercepts of the lines.

Figure 3.4b shows the regression line and uncertainty on a scale with the x-axis
extended to zero to display the intercepts—the points on the y-axis where the lines
cross zero. This highlights the fact that not only is the value meaningless in terms
of its interpretation, it is also so far out of the range of our data as to be highly
unreliable as a subpopulation estimate.

Care must be taken in interpreting the coefficients in this model. We derive mean-
ing from the coefficients (or, sometimes, functions of the coefficients) by examining
average or predicted test scores within and across specific subgroups. Some coeffi-
cients are interpretable only for certain subgroups.

1. The intercept represents the predicted test scores for children whose mothers did
not complete high school and had IQs of 0—not a meaningful scenario. (As we
discuss in Sections 4.1–4.2, intercepts can be more interpretable if input variables
are centered before including them as regression predictors.)

2. The coefficient of mom.hs can be conceived as the difference between the pre-
dicted test scores for children whose mothers did not complete high school and
had IQs of 0, and children whose mothers did complete high school and had IQs
of 0. You can see this by just plugging in the appropriate numbers and comparing
the equations. Since it is implausible to imagine mothers with IQs of zero, this
coefficient is not easily interpretable.

3. The coefficient of mom.iq can be thought of as the comparison of mean test
scores across children whose mothers did not complete high school, but whose
mothers differ by 1 point in IQ. This is the slope of the dark line in Figure 3.4.

4. The coefficient on the interaction term represents the difference in the slope for
mom.iq, comparing children with mothers who did and did not complete high
school: that is, the difference between the slopes of the light and dark lines in
Figure 3.4.

An equivalent way to understand the model is to look at the separate regression
lines for children of mothers who completed high school and those whose mothers
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Figure 3.5 Illustration of interactions between smoking and home radon level on the life-
time probability of lung cancer in men. The effects of radon are much more severe for
smokers. The lines are estimated based on case-control studies; see Lin et al. (1999) for
references.

did not:

no hs: kid.score = −11 + 51 · 0 + 1.1 · mom.iq − 0.5 · 0 · mom.iq
= −11 + 1.1 · mom.iq

hs: kid.score = −11 + 51 · 1 + 1.1 · mom.iq − 0.5 · 1 · mom.iq
= 40 + 0.6 · mom.iq.

The estimated slopes of 1.1 for children whose mothers did not complete high school
and 0.6 for children of mothers who did are directly interpretable. The intercepts
still suffer from the problem of only being interpretable at mothers’ IQs of 0.

When should we look for interactions?

Interactions can be important. In practice, inputs that have large main effects
also tend to have large interactions with other inputs (however, small main effects
do not preclude the possibility of large interactions). For example, smoking has a
huge effect on cancer. In epidemiologial studies of other carcinogens, it is crucial to
adjust for smoking both as a main effect and as an interaction. Figure 3.5 illustrates
with the example of home radon exposure: high levels of radon are associated with
greater likelihood of cancer—but this difference is much greater for smokers than
for nonsmokers.

Including interactions is a way to allow a model to be fit differently to different
subsets of data. These two approaches are related, as we discuss later in the context
of multilevel models.

Interpreting regression coefficients in the presence of interactions

Models with interactions can often be more easily interpreted if we first pre-process
the data by centering each input variable about its mean or some other convenient
reference point. We discuss this in Section 4.2 in the context of linear transforma-
tions.
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3.4 Statistical inference

When illustrating specific examples, it helps to use descriptive variable names. In
order to discuss more general theory and data manipulations, however, we shall
adopt generic mathematical notation. This section introduces this notation and
discusses the stochastic aspect of the model as well.

Units, outcome, predictors, and inputs

We refer to the individual data points as units—thus, the answer to the question,
“What is the unit of analysis?” will be something like “persons” or “schools” or
“congressional elections,” not something like “pounds” or “miles.” Multilevel mod-
els feature more than one set of units (for example, both persons and schools), as
we discuss later on.

We refer to the X-variables in the regression as predictors or “predictor vari-
ables,” and y as the outcome or “outcome variable.” We do not use the terms
“dependent” and “independent” variables, because we reserve those terms for their
use in describing properties of probability distributions.

Finally, we use the term inputs for the information on the units that goes into
the X-variables. Inputs are not the same as predictors. For example, consider the
model that includes the interaction of maternal education and maternal IQ:

kid.score = 58 + 16 · mom.hs + 0.5 · mom.iq − 0.2 · mom.hs · mom.iq + error.

This regression has four predictors—maternal high school, maternal IQ, maternal
high school × IQ, and the constant term—but only two inputs, maternal education
and IQ.

Regression in vector-matrix notation

We follow the usual notation and label the outcome for the ith individual as yi and
the deterministic prediction as Xiβ = β1Xi1 + · · ·+ βkXik, indexing the persons in
the data as i = 1, . . . , n = 1378. In our most recent example, yi is the ith child’s test
score, and there are k = 4 predictors in the vector Xi (the ith row of the matrix X):
Xi1, a constant term that is defined to equal 1 for all persons; Xi2, the mother’s
high school completion status (coded as 0 or 1); Xi3, the mother’s test score; and
Xi4, the interaction between mother’s test score and high school completion status.
The vector β of coefficients has length k = 4 as well. The errors from the model
are labeled as ϵi and assumed to follow a normal distribution with mean 0 and
standard deviation σ, which we write as N(0, σ2). The parameter σ represents the
variability with which the outcomes deviate from their predictions based on the
model. We use the notation ỹ for unobserved data to be predicted from the model,
given predictors X̃; see Figure 3.6.

Two ways of writing the model

The classical linear regression model can then be written mathematically as

yi = Xiβ + ϵi

= β1Xi1 + · · · + βkXik + ϵi, for i = 1, . . . , n,

where the errors ϵi have independent normal distributions with mean 0 and standard
deviation σ.
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Figure 3.6 Notation for regression modeling. The model is fit to the observed outcomes
y given predictors X. As described in the text, the model can then be applied to predict
unobserved outcomes ỹ (indicated by small question marks), given predictors on new data
X̃.

An equivalent representation is

yi ∼ N(Xiβ, σ2), for i = 1, . . . , n,

where X is an n by k matrix with ith row Xi, or, using multivariate notation,

y ∼ N(Xβ, σ2I),

where y is a vector of length n, X is a n × k matrix of predictors, β is a column
vector of length k, and I is the n× n identity matrix. Fitting the model (in any of
its forms) using least squares yields estimates β̂ and σ̂.

Fitting and summarizing regressions in R

We can fit regressions using the lm() function in R. We illustrate with the model
including mother’s high school completion and IQ as predictors, for simplicity not
adding the interaction for now. We shall label this model as fit.3 as it is the third
model fit in this chapter:

R code fit.3 <- lm (kid.score ~ mom.hs + mom.iq)
display (fit.3)

(The spaces in the R code are not necessary, but we include them to make the code
more readable.) The result is

R output lm(formula = kid.score ~ mom.hs + mom.iq)

coef.est coef.se
(Intercept) 25.7 5.9

mom.hs 5.9 2.2
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mom.iq 0.6 0.1
n = 434, k = 3

residual sd = 18.1, R-Squared = 0.21

The display() function was written by us (see Section C.2 for details) to give a
clean printout focusing on the most pertinent pieces of information: the coefficients
and their standard errors, the sample size, number of predictors, residual standard
deviation, and R2.

In contrast, the default R option,

R codeprint (fit.3)

displays too little information, giving only the coefficient estimates with no standard
errors and no information on the residual standard deviations:

R codeCall:

lm(formula = kid.score ~ mom.hs + mom.iq)

Coefficients:

(Intercept) mom.hs mom.iq
25.73154 5.95012 0.56391

Another option in R is the summary() function:

R codesummary (fit.3)

but this produces a mass of barely digestible information displayed to many decimal
places:

R outputCall:
lm(formula = formula("kid.score ~ mom.hs + mom.iq"))

Residuals:
Min 1Q Median 3Q Max

-52.873 -12.663 2.404 11.356 49.545

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.73154 5.87521 4.380 1.49e-05 ***
mom.hs 5.95012 2.21181 2.690 0.00742 **
mom.iq 0.56391 0.06057 9.309 < 2e-16 ***

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.14 on 431 degrees of freedom
Multiple R-Squared: 0.2141, Adjusted R-squared: 0.2105
F-statistic: 58.72 on 2 and 431 DF, p-value: < 2.2e-16

We prefer our display() function, which consisely presents the most relevant in-
formation from the model fit.

Least squares estimate of the vector of regression coefficients, β

For the model y = Xβ + ϵ, the least squares estimate is the β̂ that minimizes the
sum of squared errors,

∑n
i=1(yi − Xiβ̂)2, for the given data X, y. Intuitively, the

least squares criterion seems useful because, if we are trying to predict an outcome
using other variables, we want to do so in such a way as to minimize the error of
our prediction.
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Figure 3.7 Distribution representing uncertainty in an estimated regression coefficient. The
range of this distribution corresponds to the possible values of β that are consistent with
the data. When using this as an uncertainty distribution, we assign an approximate 68%
chance that β will lie within 1 standard error of the point estimate, β̂, and an approximate
95% chance that β will lie within 2 standard errors. Assuming the regression model is
correct, it should happen only about 5% of the time that the estimate, β̂, falls more than 2
standard errors away from the true β.

The least squares estimate is also the maximum likelihood estimate if the errors
ϵi are independent with equal variance and normally distributed (see Section 18.1).
In any case, the least squares estimate can be expressed in matrix notation as
β̂ = (XtX)−1Xty. In practice, the computation is performed using various efficient
matrix decompositions without ever fully computing XtX or inverting it. For our
purposes, it is merely useful to realize that β̂ is a linear function of the outcomes y.

Standard errors: uncertainty in the coefficient estimates

The estimates β̂ come with standard errors, as displayed in the regression output.
The standard errors represent estimation uncertainty. We can roughly say that
coefficient estimates within 2 standard errors of β̂ are consistent with the data.
Figure 3.7 shows the normal distribution that approximately represents the range
of possible values of β. For example, in the model on page 38, the coefficient of
mom.hs has an estimate β̂ of 5.9 and a standard error of 2.2; thus the data are
roughly consistent with values of β in the range [5.9 ± 2 · 2.2] = [1.5, 10.3]. More
precisely, one can account for the uncertainty in the standard errors themselves by
using the t distribution with degrees of freedom set to the number of data points
minus the number of estimated coefficients, but the normal approximation works
fine when the degrees of freedom are more than 30 or so.

The uncertainty in the coefficient estimates will also be correlated (except in
the special case of studies with balanced designs). All this information is encoded
in the estimated covariance matrix Vβ σ̂2, where Vβ = (XtX)−1. The diagonal
elements of Vβ σ̂2 are the estimation variances of the individual components of β, and
the off-diagonal elements represent covariances of estimation. Thus, for example,√

Vβ 11 σ̂ is the standard error of β̂1,
√

Vβ 22 σ̂ is the standard error of β̂2, and
Vβ 12/

√
Vβ 11Vβ 22 is the correlation of the estimates β̂1, β̂2.

We do not usually look at this covariance matrix; rather, we summarize inferences
using the coefficient estimates and standard errors, and we use the covariance matrix
for predictive simulations, as described in Section 7.2.

Residuals, ri

The residuals, ri = yi − Xiβ̂, are the differences between the data and the fitted
values. As a byproduct of the least squares estimation of β, the residuals ri will be
uncorrelated with all the predictors in the model. If the model includes a constant
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Figure 3.8 Two hypothetical datasets with the same regression line, y = a+bx, but different
values of the residual standard deviation, σ. The left plot shows actual data from a survey
of adults; the right plot shows data with random noise added to y.

term, then the residuals must be uncorrelated with a constant, which means they
must have mean 0. This is a byproduct of how the model is estimated; it is not a
regression assumption. We shall discuss later in the chapter how residuals can be
used to diagnose problems with the model.

Residual standard deviation σ̂ and explained variance R2

The residual standard deviation, σ̂ =
√∑n

i=1 r2
i /(n − k), summarizes the scale

of the residuals. For example, in the test scores example, σ̂ = 18, which tells us
that the linear model can predict children’s test scores to about an accuracy of 18
points. Said another way, we can think of this standard deviation as a measure of
the average distance each observation falls from its prediction from the model.

The fit of the model can be summarized by σ̂ (the smaller the residual variance,
the better the fit) and by R2, the fraction of variance “explained” by the model.
The “unexplained” variance is σ̂2, and if we label sy as the standard deviation
of the data, then R2 = 1 − σ̂2/s2

y. In the test scores regression, R2 is a perhaps
disappointing 22%. (However, in a deeper sense, it is presumably a good thing
that this regression has a low R2—that is, that a child’s achievement cannot be
accurately predicted given only these maternal characteristics.)

The quantity n−k, the number of data points minus the number of estimated
coefficients, is called the degrees of freedom for estimating the residual errors. In
classical regression, k must be less than n—otherwise, the data could be fit perfectly,
and it would not be possible to estimate the regression errors at all.

Difficulties in interpreting residual standard deviation and explained variance

As we make clear throughout the book, we are generally more interested in the
“deterministic” part of the model, y = Xβ, than in the variation, ϵ. However, when
we do look at the residual standard deviation, σ̂, we are typically interested in it for
its own sake—as a measure of the unexplained variation in the data—or because of
its relevance to the precision of inferences about the regression coefficients β. (As
discussed already, standard errors for β are proportional to σ.) Figure 3.8 illustrates
two regressions with the same deterministic model, y = a + bx, but different values
of σ.

Interpreting the proportion of explained variance, R2, can be tricky because its
numerator and denominator can be changed in different ways. Figure 3.9 illustrates
with an example where the regression model is identical, but R2 decreases because
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Figure 3.9 Two hypothetical datasets with the same regression line, y = a+bx and residual
standard deviation, σ, but different values of the explained variance, R2. The left plot shows
actual data; the right plot shows data restricted to heights between 65 and 70 inches.

the model is estimated on a subset of the data. (Going from the left to right plots
in Figure 3.9, the residual standard deviation σ is unchanged but the standard
deviation of the raw data, sy, decreases when we restrict to this subset; thus, R2 =
1− σ̂2/s2

y declines.) Even though R2 is much lower in the right plot, the model fits
the data just as well as in the plot on the left.

Statistical significance

Roughly speaking, if a coefficient estimate is more than 2 standard errors away
from zero, then it is called statistically significant. When an estimate is statistically
significant, we are fairly sure that the sign (+ or −) of the estimate is stable, and
not just an artifact of small sample size.

People sometimes think that if a coefficient estimate is not significant, then it
should be excluded from the model. We disagree. It is fine to have nonsignificant
coefficients in a model, as long as they make sense. We discuss this further in Section
4.6.

Uncertainty in the residual standard deviation

Under the model, the estimated residual variance, σ̂2, has a sampling distribution
centered at the true value, σ2, and proportional to a χ2 distribution with n−k
degrees of freedom. We make use of this uncertainty in our predictive simulations,
as described in Section 7.2.

3.5 Graphical displays of data and fitted model

Displaying a regression line as a function of one input variable

We displayed some aspects of our test scores model using plots of the data in Figures
3.1–3.3.

We can make a plot such as Figure 3.2 as follows:

R code fit.2 <- lm (kid.score ~ mom.iq)

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")
curve (coef(fit.2)[1] + coef(fit.2)[2]*x, add=TRUE)

The function plot() creates the scatterplot of observations, and curve superim-
poses the regression line using the saved coefficients from the lm() call (as extracted
using the coef() function). The expression within curve() can also be written us-
ing matrix notation in R:
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R codecurve (cbind(1,x) %*% coef(fit.2), add=TRUE)

Displaying two fitted regression lines

Model with no interaction. For the model with two inputs, we can create a graph
with two sets of points and two regression lines, as in Figure 3.3:

R codefit.3 <- lm (kid.score ~ mom.hs + mom.iq)

colors <- ifelse (mom.hs==1, "black", "gray")
plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score",
col=colors, pch=20)

curve (cbind (1, 1, x) %*% coef(fit.3), add=TRUE, col="black")
curve (cbind (1, 0, x) %*% coef(fit.3), add=TRUE, col="gray")

Setting pch=20 tells the plot() function to display the data using small dots, and
the col option sets the colors of the points, which we have assigned to black or
gray according to the value of mom.hs.1 Finally, the calls to curve() superimpose
the regression lines for the two groups defined by maternal high school completion.
Model with interaction. We can set up the same sort of plot for the model with
interactions, with the only difference being that the two lines have different slopes:

R codefit.4 <- lm (kid.score ~ mom.hs + mom.iq + mom.hs:mom.iq)

colors <- ifelse (mom.hs==1, "black", "gray")
plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score",
col=colors, pch=20)

curve (cbind (1, 1, x, 1*x) %*% coef(fit.4), add=TRUE, col="black")
curve (cbind (1, 0, x, 0*x) %*% coef(fit.4), add=TRUE, col="gray")

The result is shown in Figure 3.4.

Displaying uncertainty in the fitted regression

As discussed in Section 7.2, we can use the sim() function in R to create simulations
that represent our uncertainty in the estimated regression coefficients. Here we
briefly describe how to use these simulations to display this inferential uncertainty.
For simplicity we return to a model with just one predictor:

R codefit.2 <- lm (kid.score ~ mom.iq)

yielding

R outputcoef.est coef.se
(Intercept) 25.8 5.9

mom.iq 0.6 0.1
n = 434, k = 2
residual sd = 18.3, R-Squared = 0.2

The following code creates Figure 3.10, which shows the fitted regression line
along with several simulations representing uncertainty about the line:

1 An alternative sequence of commands is
plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score", type="n")
points (mom.iq[mom.hs==1], kid.score[mom.hs==1], pch=20, col="black")
points (mom.iq[mom.hs==0], kid.score[mom.hs==0], pch=20, col="gray")
Here, plot(), called with the type="n" option, sets up the axes but without plotting the
points. Then each call to points() superimposes the observations for each group (defined by
maternal high school completion) separately—each using a different symbol.
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Figure 3.10 Data and regression of child’s test score on maternal IQ, with the solid line
showing the fitted regression model and light lines indicating uncertainty in the fitted re-
gression.

R code fit.2.sim <- sim (fit.2)
plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")

for (i in 1:10){
curve (fit.2.sim$beta[i,1] + fit.2.sim$beta[i,2]*x, add=TRUE,col="gray")

}

curve (coef(fit.2)[1] + coef(fit.2)[2]*x, add=TRUE, col="black")

The for (i in i:10) loop allows us to display 10 different simulations.2 Figure
3.10 also illustrates the uncertainty we have about predictions from our model.
This uncertainty increases with greater departures from the mean of the predictor
variable.

Displaying using one plot for each input variable

Now consider the regression model with the indicator for maternal high school
completion included:

R code fit.3 <- lm (kid.score ~ mom.hs + mom.iq)

We display this model in Figure 3.11 as two plots, one for each of the two input
variables with the other held at its average value:

R code beta.hat <- coef (fit.3)
beta.sim <- sim (fit.3)$beta

par (mfrow=c(1,2))

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")

for (i in 1:10){
curve (cbind (1, mean(mom.hs), x) %*% beta.sim[i,], lwd=.5,

col="gray", add=TRUE)

}
curve (cbind (1, mean(mom.hs), x) %*% beta.hat, col="black", add=TRUE)

plot (mom.hs, kid.score, xlab="Mother completed high school",

2 Another way to code this loop in R is to use the apply() function, for example,
Oneline <- function (beta) {curve (beta[1]+beta[2]*x, add=TRUE, col="gray")}
apply (fit.2.sim$beta, 1, Oneline)
Using apply() in this way is cleaner for experienced R users; the looped form as shown in the
text is possibly easier for R novices to understand.
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Figure 3.11 Data and regression of child’s test score on maternal IQ and high school com-
pletion, shown as a function of each of the two input variables (with light lines indicating
uncertainty in the regressions). Values for high school completion have been jittered to
make the points more distinct.

ylab="Child test score")
for (i in 1:10){
curve (cbind (1, x, mean(mom.iq)) %*% beta.sim[i,], lwd=.5,

col="gray", add=TRUE)
}
curve (cbind (1, x, mean(mom.iq)) %*% beta.hat, col="black", add=TRUE)

3.6 Assumptions and diagnostics

We now turn to the assumptions of the regression model, along with diagnostics
that can be used to assess whether some of these assumptions are reasonable. Some
of the most important assumptions, however, rely on the researcher’s knowledge of
the subject area and may not be directly testable from the available data alone.

Assumptions of the regression model

We list the assumptions of the regression model in decreasing order of importance.
1. Validity. Most importantly, the data you are analyzing should map to the re-

search question you are trying to answer. This sounds obvious but is often over-
looked or ignored because it can be inconvenient. Optimally, this means that
the outcome measure should accurately reflect the phenomenon of interest, the
model should include all relevant predictors, and the model should generalize to
the cases to which it will be applied.
For example, with regard to the outcome variable, a model of earnings will not
necessarily tell you about patterns of total assets. A model of test scores will not
necessarily tell you about child intelligence or cognitive development.
Choosing inputs to a regression is often the most challenging step in the analysis.
We are generally encouraged to include all “relevant” predictors, but in practice it
can be difficult to determine which are necessary and how to interpret coefficients
with large standard errors. Chapter 9 discusses the choice of inputs for regressions
used in causal inference.
A sample that is representative of all mothers and children may not be the most
appropriate for making inferences about mothers and children who participate
in the Temporary Assistance for Needy Families program. However, a carefully
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selected subsample may reflect the distribution of this population well. Similarly,
results regarding diet and exercise obtained from a study performed on patients
at risk for heart disease may not be generally applicable to generally healthy
individuals. In this case assumptions would have to be made about how results
for the at-risk population might relate to those for the healthy population.
Data used in empirical research rarely meet all (if any) of these criteria precisely.
However, keeping these goals in mind can help you be precise about the types of
questions you can and cannot answer reliably.

2. Additivity and linearity. The most important mathematical assumption of the
regression model is that its deterministic component is a linear function of the
separate predictors: y = β1x1 + β2x2 + · · · .
If additivity is violated, it might make sense to transform the data (for example, if
y = abc, then log y = log a + log b + log c) or to add interactions. If linearity is
violated, perhaps a predictor should be put in as 1/x or log(x) instead of simply
linearly. Or a more complicated relationship could be expressed by including
both x and x2 as predictors.
For example, it is common to include both age and age2 as regression predictors.
In medical and public health examples, this allows a health measure to decline
with higher ages, with the rate of decline becoming steeper as age increases. In
political examples, including both age and age2 allows the possibility of increas-
ing slopes with age and also U-shaped patterns if, for example, the young and
old favor taxes more than the middle-aged.
In such analyses we usually prefer to include age as a categorical predictor, as
discussed in Section 4.5. Another option is to use a nonlinear function such as
a spline or other generalized additive model. In any case, the goal is to add
predictors so that the linear and additive model is a reasonable approximation.

3. Independence of errors. The simple regression model assumes that the errors
from the prediction line are independent. We will return to this issue in detail
when discussing multilevel models.

4. Equal variance of errors. If the variance of the regression errors are unequal,
estimation is more efficiently performed using weighted least squares, where each
point is weighted inversely proportional to its variance (see Section 18.4). In most
cases, however, this issue is minor. Unequal variance does not affect the most
important aspect of a regression model, which is the form of the predictor Xβ.

5. Normality of errors. The regression assumption that is generally least important
is that the errors are normally distributed. In fact, for the purpose of estimat-
ing the regression line (as compared to predicting individual data points), the
assumption of normality is barely important at all. Thus, in contrast to many
regression textbooks, we do not recommend diagnostics of the normality of re-
gression residuals.
If the distribution of residuals is of interest, perhaps because of predictive goals,
this should be distinguished from the distribution of the data, y. For example,
consider a regression on a single discrete predictor, x, which takes on the values
0, 1, and 2, with one-third of the population in each category. Suppose the
true regression line is y = 0.2 + 0.5x with normally distributed errors with
standard deviation 0.1. Then a graph of the data y will show three fairly sharp
modes centered at 0.2, 0.7, and 1.2. Other examples of such mixture distributions
arise in economics, when including both employed and unemployed people, or
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Figure 3.12 Residual plot for child test score data when regressed on maternal IQ, with
dotted lines showing ±1 standard-deviation bounds. The residuals show no striking pat-
terns.

the study of elections, when comparing districts with incumbent legislators of
different parties.

Further assumptions are necessary if a regression coefficient is to be given a causal
interpretation, as we discuss in Chapters 9 and 10.

Plotting residuals to reveal aspects of the data not captured by the model

A good way to diagnose violations of some of the assumptions just considered
(importantly, linearity) is to plot the residuals ri versus fitted values Xiβ̂ or simply
individual predictors xi; Figure 3.12 illustrates for the test scores example where
child’s test score is regressed simply on mother’s IQ. The plot looks fine; there do
not appear to be any strong patterns. In other settings, residual plots can reveal
systematic problems with model fit, as is illustrated, for example, in Chapter 6.

3.7 Prediction and validation

Sometimes the goal of our model is to make predictions using new data. In the case
of predictions of future time points, these data may eventually become available,
allowing the researcher to see how well the model works for this purpose. Sometimes
out-of-sample predictions are made for the explicit purpose of model checking, as
we illustrate next.

Prediction

From model (3.4) on page 33, we would predict that a child of a mother who
graduated from high school and with IQ of 100 would achieve a test score of 26 +
6 · 1 + 0.6 · 100 = 92. If this equation represented the true model, rather than an
estimated model, then we could use σ̂ = 18 as an estimate of the standard error for
our prediction. Actually, the estimated error standard deviation is slightly higher
than σ̂, because of uncertainty in the estimate of the regression parameters—a
complication that gives rise to those special prediction standard errors seen in most
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Figure 3.13 Plots assessing how well the model fit to older children works in making pre-
dictions for younger children. The first panel compares predictions for younger children
from a model against their actual values. The second panel compares residuals from these
predictions against the predicted values.

regression texts.3 In R we can create a data frame for the new data and then use
the predict() function. For example, the following code gives a point prediction
and 95% predictive interval:

R code x.new <- data.frame (mom.hs=1, mom.iq=100)

predict (fit.3, x.new, interval="prediction", level=0.95)

More generally, we can propagate predictive uncertainty using simulation, as ex-
plained in Section 7.2.

We use the notation ỹi for the outcome measured on a new data point and X̃i

for the vector of predictors (in this example, X̃i = (1, 1, 100)). The predicted value
from the model is X̃iβ̂, with a predictive standard error slightly higher than σ̂.
The normal distribution then implies that approximately 50% of the actual values
should be within ±0.67σ̂ of the predictions, 68% should be within ±σ̂, and 95%
within ±2σ̂.

We can similarly predict a vector of ñ new outcomes, ỹ, given a ñ × k matrix of
predictors, X̃; see Figure 3.13.

External validation

The most fundamental way to test a model, in any scientific context, is to use it to
make predictions and then compare to actual data.

Figure 3.13 illustrates with the test score data model, which was fit to data
collected from 1986 and 1994 for children who were born before 1987. We apply the
model to predict the outcomes of children born in 1987 or later (data collected from
1990 to 1998). This is not an ideal example for prediction because we would not
necessarily expect the model for the older children to be appropriate for the younger
children, even though tests for all children were taken at age 3 or 4. However, we
can use it to demonstrate the methods for computing and evaluating predictions.
We look at point predictions here and simulation-based predictions in Section 7.2.

The new data, ỹ, are the outcomes for the 336 new children predicted from

3 For example, in linear regression with one predictor, the “forecast standard error” around the
prediction from a new data point with predictor value x̃ is

σ̂forecast = σ̂

s

1 +
1

n
+

(x̃ − x̄)2
Pn

i=1(xi − x̄)2
.
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mom.iq and mom.hs, using the model fit using the data from the older children.
The first panel of Figure 3.13 plots actual values ỹi versus predicted values X̃iβ̂,
and the second panel plots residuals versus predicted values with dotted lines at ±σ̂
(approximate 68% error bounds; see Section 2.3). The error plot shows no obvious
problems with applying the older-child model to the younger children, though from
the scale we detect that the predictions have wide variability.

Even if we had detected clear problems with these predictions, this would not
mean necessarily that there is anything wrong with the model as fit to the original
dataset. However, we would need to understand it further before generalizing to
other children.

3.8 Bibliographic note

Linear regression has been used for centuries in applications in the social and phys-
ical sciences; see Stigler (1986). Many introductory statistics texts have good dis-
cussions of simple linear regression, for example Moore and McCabe (1998) and De
Veaux et al. (2006). Fox (2002) teaches R in the context of applied regression. In
addition, the R website links to various useful free literature.

Carlin and Forbes (2004) provide an excellent introduction to the concepts of
linear modeling and regression, and Pardoe (2006) is an introductory text focus-
ing on business examples. For fuller treatments, Neter et al. (1996) and Weisberg
provide accessible introductions to regression, and Ramsey and Schafer (2001) is a
good complement, with a focus on issues such as model understanding, graphical
display, and experimental design. Woolridge (2001) presents regression modeling
from an econometric perspective. The R2 summary of explained variance is ana-
lyzed by Wherry (1931); see also King (1986) for examples of common mistakes in
reasoning with regression and Section 21.9 for more advanced references on R2 and
other methods for summarizing fitted models. Berk (2004) discusses the various
assumptions implicit in regression analysis.

For more on children’s test scores and maternal employment, see Hill et al. (2005).
See Appendix B and Murrell (2005) for more on how to make the sorts of graphs
shown in this chapter and throughout the book. The technique of jittering (used in
Figure 3.1 and elsewhere in this book) comes from Chambers et al. (1983).

3.9 Exercises

1. The folder pyth contains outcome y and inputs x1, x2 for 40 data points, with a
further 20 points with the inputs but no observed outcome. Save the file to your
working directory and read it into R using the read.table() function.

(a) Use R to fit a linear regression model predicting y from x1, x2, using the first
40 data points in the file. Summarize the inferences and check the fit of your
model.

(b) Display the estimated model graphically as in Figure 3.2.
(c) Make a residual plot for this model. Do the assumptions appear to be met?
(d) Make predictions for the remaining 20 data points in the file. How confident

do you feel about these predictions?

After doing this exercise, take a look at Gelman and Nolan (2002, section 9.4)
to see where these data came from.

2. Suppose that, for a certain population, we can predict log earnings from log
height as follows:
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• A person who is 66 inches tall is predicted to have earnings of $30,000.
• Every increase of 1% in height corresponds to a predicted increase of 0.8% in

earnings.
• The earnings of approximately 95% of people fall within a factor of 1.1 of

predicted values.

(a) Give the equation of the regression line and the residual standard deviation
of the regression.

(b) Suppose the standard deviation of log heights is 5% in this population. What,
then, is the R2 of the regression model described here?

3. In this exercise you will simulate two variables that are statistically independent
of each other to see what happens when we run a regression of one on the other.

(a) First generate 1000 data points from a normal distribution with mean 0 and
standard deviation 1 by typing var1 <- rnorm(1000,0,1) in R. Generate
another variable in the same way (call it var2). Run a regression of one
variable on the other. Is the slope coefficient statistically significant?

(b) Now run a simulation repeating this process 100 times. This can be done
using a loop. From each simulation, save the z-score (the estimated coefficient
of var1 divided by its standard error). If the absolute value of the z-score
exceeds 2, the estimate is statistically significant. Here is code to perform the
simulation:4

R code z.scores <- rep (NA, 100)

for (k in 1:100) {
var1 <- rnorm (1000,0,1)

var2 <- rnorm (1000,0,1)
fit <- lm (var2 ~ var1)
z.scores[k] <- coef(fit)[2]/se.coef(fit)[2]

}

How many of these 100 z-scores are statistically significant?

4. The child.iq folder contains a subset of the children and mother data discussed
earlier in the chapter. You have access to children’s test scores at age 3, mother’s
education, and the mother’s age at the time she gave birth for a sample of 400
children. The data are a Stata file which you can read into R by saving in your
working directory and then typing the following:

R code library ("foreign")
iq.data <- read.dta ("child.iq.dta")

(a) Fit a regression of child test scores on mother’s age, display the data and
fitted model, check assumptions, and interpret the slope coefficient. When do
you recommend mothers should give birth? What are you assuming in making
these recommendations?

(b) Repeat this for a regression that further includes mother’s education, inter-
preting both slope coefficients in this model. Have your conclusions about the
timing of birth changed?

4 We have initialized the vector of z-scores with missing values (NAs). Another approach is to
start with z.scores <- numeric(length=100), which would initialize with a vector of zeroes.
In general, however, we prefer to initialize with NAs, because then when there is a bug in the
code, it sometimes shows up as NAs in the final results, alerting us to the problem.



EXERCISES 51

(c) Now create an indicator variable reflecting whether the mother has completed
high school or not. Consider interactions between the high school completion
and mother’s age in family. Also, create a plot that shows the separate regres-
sion lines for each high school completion status group.

(d) Finally, fit a regression of child test scores on mother’s age and education level
for the first 200 children and use this model to predict test scores for the next
200. Graphically display comparisons of the predicted and actual scores for
the final 200 children.

5. The folder beauty contains data from Hamermesh and Parker (2005) on student
evaluations of instructors’ beauty and teaching quality for several courses at the
University of Texas. The teaching evaluations were conducted at the end of the
semester, and the beauty judgments were made later, by six students who had
not attended the classes and were not aware of the course evaluations.

(a) Run a regression using beauty (the variable btystdave) to predict course
evaluations (courseevaluation), controlling for various other inputs. Dis-
play the fitted model graphically, and explaining the meaning of each of the
coefficients, along with the residual standard deviation. Plot the residuals
versus fitted values.

(b) Fit some other models, including beauty and also other input variables. Con-
sider at least one model with interactions. For each model, state what the
predictors are, and what the inputs are (see Section 2.1), and explain the
meaning of each of its coefficients.

See also Felton, Mitchell, and Stinson (2003) for more on this topic.


