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CHAPTER 11

Multilevel structures

As we illustrate in detail in subsequent chapters, multilevel models are extensions
of regression in which data are structured in groups and coefficients can vary by
group. In this chapter, we illustrate basic multilevel models and present several
examples of data that are collected and summarized at different levels. We start with
simple grouped data—persons within cities—where some information is available
on persons and some information is at the city level. We then consider examples of
repeated measurements, time-series cross sections, and non-nested structures. The
chapter concludes with an outline of the costs and benefits of multilevel modeling
compared to classical regression.

11.1 Varying-intercept and varying-slope models

With grouped data, a regression that includes indicators for groups is called a
varying-intercept model because it can be interpreted as a model with a different
intercept within each group. Figure 11.1a illustrates with a model with one contin-
uous predictor x and indicators for J = 5 groups. The model can be written as a
regression with 6 predictors or, equivalently, as a regression with two predictors (x
and the constant term), with the intercept varying by group:

varying-intercept model: y; = a;p;) + i + €;.

Another option, shown in Figure 11.1b, is to let the slope vary with constant inter-
cept:

varying-slope model: y; = o + B[;%i + €.
Finally, Figure 11.1c shows a model in which both the intercept and the slope vary
by group:

varying-intercept, varying-slope model: y; = ;i + Bj[;%i + €i-

The varying slopes are interactions between the continuous predictor x and the
group indicators.

As we discuss shortly, it can be challenging to estimate all these a;’s and fj3;’s,
especially when inputs are available at the group level. The first step of multilevel
modeling is to set up a regression with varying coefficients; the second step is to
set up a regression model for the coefficients themselves.

11.2 Clustered data: child support enforcement in cities

With multilevel modeling we need to go beyond the classical setup of a data vector
y and a matrix of predictors X (as shown in Figure 3.6 on page 38). Each level of
the model can have its own matrix of predictors.

We illustrate multilevel data structures with an observational study of the effect
of city-level policies on enforcing child support payments from unmarried fathers.
The treatment is at the group (city) level, but the outcome is measured on individual
families.
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Figure 11.1 Linear regression models with (a) varying intercepts (y = o +pz), (b) varying
slopes (y = o+ Bizx), and (c) both (y = aj + Bx). The varying intercepts correspond to
group indicators as regression predictors, and the varying slopes represent interactions

between x and the group indicators.

dad mom informal city city enforce  benefit city indicators

ID  age race support 1D name intensity level 1 2 20

1 19 hisp 1 1 Oakland 0.52 1.01 1 0 0

2 27 black 0 1 Oakland 0.52 1.01 1 0 0

3 26 black 1 1 Oakland 0.52 1.01 1 0 0
24§ 19 white 1 3 Baltimore 005 110 0 0 0
249 26 black 1 3 Baltimore 0.05 1.10 0 0 0
1366 21 black 1 20 Norfolk 011 108 0 0 1
1367 28 hisp 0 20 Norfolk —0.11 1.08 0 O 1

Figure 11.2 Some of the data from the child support study, structured as a single matriz
with one row for each person. These indicators would be used in classical regression to
allow for variation among cities. In a multilevel model they are not necessary, as we code
cities using their index variable (“city ID”) instead. We prefer separating the data into
individual-level and city-level datasets, as in Figure 11.35.

Studying the effectiveness of child support enforcement

Cities and states in the United States have tried a variety of strategies to encourage
or force fathers to give support payments for children with parents who live apart.
In order to study the effectiveness of these policies for a particular subset of high-
risk children, an analysis was done using a sample of 1367 noncohabiting parents
from the Fragile Families study, a survey of unmarried mothers of newborns in
20 cities. The survey was conducted by sampling from hospitals which themselves
were sampled from the chosen cities, but here we ignore the complexities of the
data collection and consider the mothers to have been sampled at random (from
their demographic category) in each city.

To estimate the effect of child support enforcement policies, the key “treatment”
predictor is a measure of enforcement policies, which is available at the city level.
The researchers estimated the probability that the mother received informal sup-
port, given the city-level enforcement measure and other city- and individual-level
predictors.
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dad mom informal city
ID age race support ID

1 19 hisp 1 1 city city enforce-  benefit
2 927  black 0 1 ID name ment level
3 26 black 1 1 1 Oakland 052 101
2 Austin 0.00 0.75
248 19  white 1 3 3 Baltimore —0.05 1.10
249 26 black 1 3
: : : 20 Norfolk —0.11 1.08
1366 21  black 1 20
1367 28 hisp 0 20

Figure 11.3 Data from the child support study, structured as two matrices, one for persons
and one for cities. The inputs at the different levels are now clear. Compare to Figure 11.2.

A data matriz for each level of the model

Figure 11.2 shows the data for the analysis as it might be stored in a computer
package, with information on each of the 1367 mothers surveyed. To make use
of the multilevel structure of the data, however, we need to construct two data
matrices, one for each level of the model, as Figure 11.3 illustrates. At the left is
the person-level data matrix, with one row for each survey respondent, and their
cities are indicated by an index variable; at the right is the city data matrix, giving
the name and other information available for each city.

At a practical level, the two-matrix format of Figure 11.3 has the advantage
that it contains each piece of information exactly once. In contrast, the single large
matrix in Figure 11.2 has each city’s data repeated several times. Computer memory
is cheap so this would not seem to be a problem; however, if city-level information
needs to be added or changed, the single-matrix format invites errors.

Conceptually, the two-matrix, or multilevel, data structure has the advantage of
clearly showing which information is available on individuals and which on cities. It
also gives more flexibility in fitting models, allowing us to move beyond the classical
regression framework.

Individual- and group-level models

We briefly outline several possible ways of analyzing these data, as a motivation
and lead-in to multilevel modeling.

Individual-level regression. In the most basic analysis, informal support (as re-
ported by mothers in the survey) is the binary outcome, and there are several
individual- and city-level predictors. Enforcement is considered as the treatment,
and a logistic regression is used, also controlling for other inputs. This is the starting
point of the observational study.

Using classical regression notation, the model is Pr(y; =1) = logit ™" (X;3), where
X includes the constant term, the treatment (enforcement intensity), and the other
predictors (father’s age and indicators for mother’s race at the individual level;
and benefit level at the city level). X is thus constructed from the data matrix of
Figure 11.2. This individual-level regression has the problem that it ignores city-
level variation beyond that explained by enforcement intensity and benefit level,
which are the city-level predictors in the model.
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city city enforce-  benefit # in avg. prop. proportion with
ID name ment level sample age black informal support
1 Oakland 0.52 1.01 78 259 0.67 0.55
2 Austin 0.00 0.75 91 25.8 0.42 0.54
3 Baltimore —0.05 1.10 101 27.0 0.86 0.67
20 Norfolk —0.11 1.08 31 274 084 0.65

Figure 11.4 City-level data from child support study (as in the right panel of Figure 11.8),
also including sample sizes and sample averages from the individual responses.

Group-level regression on cily averages. Another approach is to perform a city-
level analysis, with individual-level predictors included using their group-level av-
erages. Figure 11.4 illustrates: here, the outcome, y;, would be the average total
support among the respondents in city j, the enforcement indicator would be the
treatment, and the other variables would also be included as predictors. Such a
regression—in this case, with 20 data points—has the advantage that its errors are
automatically at the city level. However, by aggregating, it removes the ability of
individual predictors to predict individual outcomes. For example, it is possible that
older fathers give more informal support—but this would not necessarily translate
into average father’s age being predictive of more informal support at the city level.

Individual-level regression with city indicators, followed by group-level regression of
the estimated city effects. A slightly more elaborate analysis proceeds in two steps,
first fitting a logistic regression to the individual data y given individual predictors
(in this example, father’s age and indicators for mother’s race) along with indicators
for the 20 cities. This first-stage regression then has 22 predictors. (The constant
term is not included since we wish to include indicators for all the cities; see the
discussion at the end of Section 4.5.)

The next step in this two-step analysis is to perform a linear regression at the city
level, considering the estimated coefficients of the city indicators (in the individual
model that was just fit) as the “data” y;. This city-level regression has 20 data points
and uses, as predictors, the city-level data (in this case, enforcement intensity and
benefit level). Each of the predictors in the model is thus included in one of the two
regressions.

The two-step analysis is reasonable in this example but can run into problems
when sample sizes are small in particular groups, or when there are interactions be-
tween individual- and group-level predictors. Multilevel modeling is a more general
approach that can include predictors at both levels at once.

Multilevel models

The multilevel model looks something like the two-step model we have described,
except that both steps are fitted at once. In this example, a simple multilevel model
would have two components: a logistic regression with 1369 data points predicting
the binary outcome given individual-level predictors and with an intercept that can
vary by city, and a linear regression with 20 data points predicting the city intercepts
from city-level predictors. In the multilevel framework, the key link between the
individual and city levels is the city indicator—the “city ID” variable in Figure
11.3, which takes on values between 1 and 20.
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For this example, we would have a logistic regression at the data level:
Pr(y;=1) = logit ™" (X;8 + a;p), fori=1,...,n, (11.1)

where X is the matrix of individual-level predictors and j[i] indexes the city where
person i resides. The second part of the model—what makes it “multilevel”—is the
regression of the city coefficients:

a; ~N(Uj,02), for j=1,...,20, (11.2)

where U is the matrix of city-level predictors, v is the vector of coefficients for the
city-level regression, and o, is the standard deviation of the unexplained group-level
eITors.

The model for the a’s in (11.2) allows us to include all 20 of them in model (11.1)
without having to worry about collinearity. The key is the group-level variation
parameter o, which is estimated from the data (along with «, 8, and a) in the
fitting of the model. We return to this point in the next chapter.

Directions for the observational study

The “treatment” variable in this example is not randomly applied; hence it is quite
possible that cities that differ in enforcement intensities could differ in other impor-
tant ways in the political, economic, or cultural dimensions. Suppose the goal were
to estimate the effects of potential interventions (such as increased enforcement),
rather than simply performing a comparative analysis. Then it would make sense
to set this up as an observational study, gather relevant pre-treatment information
to capture variation among the cities, and perhaps use a matching approach to
estimate effects. In addition, good pre-treatment measures on individuals should
improve predictive power, thus allowing treatment effects to be estimated more
accurately. The researchers studying these child support data are also looking at
other outcomes, including measures of the amity between the parents as well as
financial and other support.

Along with the special concerns of causal inference, the usual recommendations of
regression analysis apply. For example, it might make sense to consider interactions
in the model (to see if enforcement is more effective for older fathers, for example).

11.3 Repeated measurements, time-series cross sections, and other
non-nested structures

Repeated measurements

Another kind of multilevel data structure involves repeated measurements on per-
sons (or other units)—thus, measurements are clustered within persons, and pre-
dictors can be available at the measurement or person level. We illustrate with a
model fitted to a longitudinal dataset of about 2000 Australian adolescents whose
smoking patterns were recorded every six months (via questionnaire) for a period of
three years. Interest lay in the extent to which smoking behavior can be predicted
based on parental smoking and other background variables, and the extent to which
boys and girls pick up the habit of smoking during their teenage years. Figure 11.5
illustrates the overall rate of smoking among survey participants.

A multilevel logistic regression was fit, in which the probability of smoking de-
pends on sex, parental smoking, the wave of the study, and an individual parameter
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Figure 11.5 Prevalence of regular (daily) smoking among participants responding at each
wave in the study of Australian adolescents (who were on average 15 years old at wave 1).

person parents smoke? wave 1 wave 2
1D sex mom dad age smokes? age  smokes?
1 f Y Y 15:0 N 15:6 N
2 f N N 14:7 N 15:1 N
3 m Y N 15:1 N 15:7 Y
4 f N N N N

15:3 15:9

Figure 11.6 Data from the smoking study as they might be stored in a single computer
file and read into R as a matriz, data. (Ages are in years:months.) These data have a
multilevel structure, with observations nested within persons.

for the person. For person j at wave ¢, the modeled probability of smoking is

Pr(y;; =1) = logit™* (G0 + Bipsmoke; + fafemale; +
+033(1 — female;) - t + fafemale; - t + ), (11.3)

where psmoke is the number of the person’s parents who smoke and female is an
indicator for females, so that §3 and (4 represent the time trends for boys and girls,
respectively.!

Figures 11.6 and 11.7 show two ways of storing the smoking data, either of which
would be acceptable for a multilevel analysis. Figure 11.6 shows a single data matrix,
with one row for each person in the study. We could then pull out the smoking
outcome y = (y;¢) in R, as follows:

y <- datal,seq(6,16,2)]

female <- ifelse (datal,2]=="f", 1, 0)
mom.smoke <- ifelse (datal[,3]=="Y", 1, 0)
dad.smoke <- ifelse (datal[,4]=="Y", 1, 0)
psmoke <- mom.smoke + dad.smoke

and from there fit the model (11.3).
Figure 11.7 shows an alternative approach using two data matrices, one with a

1 Alternatively, we could include a main effect for time and an interaction between time and sex,
Pr(y;; =1) = logit = (8o + b1 - psmoke; + (32 - female; + B3 - t + B4 - female; - ¢ + ), so that
the time trends for boys and girls are 83 and (33 + (4, respectively. This parameterization is
appropriate to the extent that the comparison between the sexes is of interest; in this case we
used (11.3) so that we could easily interpret 83 and 84 symmetrically.
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person
age  smokes? ID wave
15:0 N 1 1 person parents smoke?
14.7 N 2 1 1D sex mom dad
15:1 N 3 1
153 N 4 1 1 by N

. . 2 f N N

: : 3 m Y N
15:6 N 1 2 4 f N N
15:1 N 2 2
15:7 Y 3 2

N 4 2

15:9

Figure 11.7 Data from the smoking study, with observational data written as a single long
matriz, obs.data, with person indicators, followed by a shorter matriz, person.data, of
person-level information. Compare to Figure 11.6.

row for each observation and one with a row for each person. To model these data,
one could use R code such as

y <- obs.datal,2] R code
person <- obs.datal,3]

wave <- obs.datal,4]

female <- ifelse (person.datal,2]=="f", 1, 0)

mom.smoke <- ifelse (person.datal,3]=="Y", 1, 0)

dad.smoke <- ifelse (person.datal,4]=="Y", 1, 0)

psmoke <- mom.smoke + dad.smoke

and then parameterize the model using the index ¢ to represent individual observa-
tions, with j[i] and ¢[¢] indicating the person and wave associated with observation
i

Pr(y;i=1) = logit_l([)’o + ﬁlpsmokej[i] + Bafemale;;) +
+33(1 — femalej[i]) -t[i] + Bafemale;; - t[i] + a]-[i]). (11.4)

Models (11.3) and (11.4) are equivalent, and both can be fit in Bugs (as we
describe in Part 2B). Choosing between them is a matter of convenience. For data
in a simple two-way structure (each adolescent is measured at six regular times), it
can make sense to work with the double-indexed outcome variable, (y;¢). For a less
rectangular data structure (for example, different adolescents measured at irregular
intervals) it can be easier to string together a long data vector (y;), with person
and time recorded for each measurement, and with a separate matrix of person-level
information (as in Figure 11.7).

Time-series cross-sectional data

In settings where overall time trends are important, repeated measurement data are
sometimes called time-series cross-sectional. For example, Section 6.3 introduced a
study of the proportion of death penalty verdicts that were overturned, in each of
34 states in the 23 years, 1973-1995. The data come at the state x year levels but
we are also interested in studying variation among states and over time.
Time-series cross-sectional data are typically (although not necessarily) “rectan-
gular” in structure, with observations at regular time intervals. In contrast, gen-
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eral repeated measurements could easily have irregular patterns (for example, in
the smoking study, some children could be measured only once, others could be
measured monthly and others yearly). In addition, time-series cross-sectional data
commonly have overall time patterns, for example, the steady expansion of the
death penalty from the 1970s through the early 1990s. In this context one must
consider the state-year data as clustered within states and also within years, with
the potential for predictors at all three levels. We discuss such non-nested models
in Section 13.5.

Other non-nested structures

Non-nested data also arise when individuals are characterized by overlapping cate-
gories of attributes. For example, consider a study of earnings given occupation and
state of residence. A survey could include, say, 1500 persons in 40 job categories
in 50 states, and a regression model could predict log earnings given individual
demographic predictors X, 40 indicators for job categories, and 50 state indicators.
We can write the model generalizing the notation of (11.1)—(11.2):

yi = XiB + ajp + Yy + 6, fori=1,...,n, (11.5)
where j[i] and k[i] represent the job category and state, respectively, for person i.
The model becomes multilevel with regressions for the job and state coefficients.
For example,

a; ~N(Uja,02), for j =1,...,40, (11.6)
where U is a matrix of occupation-level predictors (for example, a measure of social
status and an indicator for whether it is supervisory), a is a vector of coefficients
for the job model, and o, is the standard deviation of the model errors at the level
of job category. Similarly, for the state coefficients:

Y& ~ N(Vig, 02) for k=1,...,50. (1L.7)

The model defined by regressions (11.5)—(11.7) is non-nested because neither the
job categories j[i] nor the states k[i] are subsets of the other.

As this example illustrates, regression notation can become awkward with mul-
tilevel models because of the need for new symbols (U, V, a, g, and so forth) to
denote data matrices, coefficients, and errors at each level.

11.4 Indicator variables and fixed or random effects
Classical regression: including a baseline and J — 1 indicator variables

As discussed at the end of Section 4.5, when including an input variable with
J categories into a classical regression, standard practice is to choose one of the
categories as a baseline and include indicators for the other J — 1 categories. For
example, if controlling for the J = 20 cities in the child support study in Figure 11.2
on page 238, one could set city 1 (Oakland) as the baseline and include indicators
for the other 19. The coefficient for each city then represents its comparison to

Oakland.

Multilevel regression: including all J indicators

In a multilevel model it is unnecessary to do this arbitrary step of picking one of
the levels as a baseline. For example, in the child support study, one would include
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indicators for all 20 cities as in model (11.1). In a classical regression these could
not all be included because they would be collinear with the constant term, but in
a multilevel model this is not a problem because they are themselves modeled by a
group-level distribution (which itself can be a regression, as in (11.2)). We discuss
on page 393 how the added information removes the collinearity that is present in
the simple least squares estimate.

Fized and random effects

The varying coefficients (a;’s or §;’s) in a multilevel model are sometimes called
random effects, a term that refers to the randomness in the probability model for
the group-level coefficients (as, for example, in (11.2) on page 241).

The term fized effects is used in contrast to random effects—but not in a con-
sistent way! Fixed effects are usually defined as varying coefficients that are not
themselves modeled. For example, a classical regression including J — 1 = 19 city
indicators as regression predictors is sometimes called a “fixed-effects model” or a
model with “fixed effects for cities.” Confusingly, however, “fixed-effects models”
sometimes refer to regressions in which coefficients do not vary by group (so that
they are fixed, not random).?

A question that commonly arises is when to use fixed effects (in the sense of vary-
ing coefficients that are unmodeled) and when to use random effects. The statistical
literature is full of confusing and contradictory advice. Some say that fixed effects
are appropriate if group-level coefficients are of interest, and random effects are
appropriate if interest lies in the underlying population. Others recommend fixed

2 Here we outline five definitions that we have seen of fixed and random effects:

1. Fixed effects are constant across individuals, and random effects vary. For example, in a growth
study, a model with random intercepts «; and fixed slope (3 corresponds to parallel lines for
different individuals i, or the model y;; = «a; + Bt. Kreft and De Leeuw (1998, p. 12) thus
distinguish between fixed and random coefficients.

2. Effects are fixed if they are interesting in themselves or random if there is interest in the un-
derlying population. Searle, Casella, and McCulloch (1992, section 1.4) explore this distinction
in depth.

3. “When a sample exhausts the population, the corresponding variable is fized; when the sample
is a small (i.e., negligible) part of the population the corresponding variable is random” (Green
and Tukey, 1960).

4. “If an effect is assumed to be a realized value of a random variable, it is called a random effect”
(LaMotte, 1983).

. Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and
random effects are estimated with shrinkage (“linear unbiased prediction” in the terminology
of Robinson, 1991). This definition is standard in the multilevel modeling literature (see, for
example, Snijders and Bosker, 1999, section 4.2) and in econometrics.

In a multilevel model, this definition implies that fixed effects 3; are estimated conditional on a
group-level variance o3 = oo and random effects 3; are estimated conditional on og estimated
from data.

ot

Of these definitions, the first clearly stands apart, but the other four definitions differ also.
Under the second definition, an effect can change from fixed to random with a change in the
goals of inference, even if the data and design are unchanged. The third definition differs from
the others in defining a finite population (while leaving open the question of what to do with
a large but not exhaustive sample), while the fourth definition makes no reference to an actual
(rather than mathematical) population at all. The second definition allows fixed effects to come
from a distribution, as long as that distribution is not of interest, whereas the fourth and fifth
do not use any distribution for inference about fixed effects. The fifth definition has the virtue
of mathematical precision but leaves unclear when a given set of effects should be considered
fixed or random. In summary, it is easily possible for a factor to be “fixed” according to some
definitions above and “random” for others. Because of these conflicting definitions, it is no
surprise that “clear answers to the question ‘fixed or random?’ are not necessarily the norm”
(Searle, Casella, and McCulloch, 1992, p. 15).
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effects when the groups in the data represent all possible groups, and random effects
when the population includes groups not in the data. These two recommendations
(and others) can be unhelpful. For example, in the child support example, we are
interested in these particular cities and also the country as a whole. The cities are
only a sample of cities in the United States—but if we were suddenly given data
from all the other cities, we would not want then to change our model.

Our advice (elaborated upon in the rest of this book) is to always use multilevel
modeling (“random effects”). Because of the conflicting definitions and advice, we
avoid the terms “fixed” and “random” entirely, and focus on the description of
the model itself (for example, varying intercepts and constant slopes), with the
understanding that batches of coefficients (for example, ay, ..., a;) will themselves
be modeled.

11.5 Costs and benefits of multilevel modeling
Quick overview of classical regression

Before we go to the effort of learning multilevel modeling, it is helpful to briefly
review what can be done with classical regression:

e Prediction for continuous or discrete outcomes,

e Fitting of nonlinear relations using transformations,

e Inclusion of categorical predictors using indicator variables,

e Modeling of interactions between inputs,

e Causal inference (under appropriate conditions).

Motivations for multilevel modeling

There are various reasons why it might be worth moving to a multilevel model,
whether for purposes of causal inference, the study of variation, or prediction of
future outcomes:

e Accounting for individual- and group-level variation in estimating group-level
regression coefficients. For example, in the child support study in Section 11.2,
interest lies in a city-level predictor (child support enforcement), and in classi-
cal regression it is not possible to include city indicators along with city-level
predictors.

e Modeling variation among individual-level regression coefficients. In classical re-
gression, one can do this using indicator variables, but multilevel modeling is
convenient when we want to model the variation of these coefficients across
groups, make predictions for new groups, or account for group-level variation in
the uncertainty for individual-level coefficients.

e Estimating regression coefficients for particular groups. For example, in the next
chapter, we discuss the problem of estimating radon levels from measurements
in several counties in Minnesota. With a multilevel model, we can get reasonable
estimates even for counties with small sample sizes, which would be difficult
using classical regression.

One or more of these reasons might apply in any particular study.

Complezity of multilevel models

A potential drawback to multilevel modeling is the additional complexity of coeffi-
cients varying by group. We do not mind this complexity—in fact, we embrace it
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in its realism—however, it does create new difficulties in understanding and sum-
marizing the model, issues we explore in Part 3 of this book.

Additional modeling assumptions

As we discuss in the next few chapters, a multilevel model requires additional
assumptions beyond those of classical regression—basically, each level of the model
corresponds to its own regression with its own set of assumptions such as additivity,
linearity, independence, equal variance, and normality.

We usually don’t mind. First, it can be possible to check these assumptions.
Perhaps more important, classical regressions can typically be identified with par-
ticular special cases of multilevel models with hierarchical variance parameters set
to zero or infinity—these are the complete pooling and no pooling models discussed
in Sections 12.2 and 12.3. Our ultimate justification, which can be seen through ex-
amples, is that the assumptions pay off in practice in allowing more realistic models
and inferences.

When does multilevel modeling make a difference?

The usual alternative to multilevel modeling is classical regression—either ignor-
ing group-level variation, or with varying coefficients that are estimated classically
(and not themselves modeled)—or combinations of classical regressions such as the
individual and group-level models described on page 239.

In various limiting cases, the classical and multilevel approaches coincide. When
there is very little group-level variation, the multilevel model reduces to classical
regression with no group indicators; conversely, when group-level coefficients vary
greatly (compared to their standard errors of estimation), multilevel modeling re-
duces to classical regression with group indicators.

When the number of groups is small (less than five, say), there is typically not
enough information to accurately estimate group-level variation. As a result, multi-
level models in this setting typically gain little beyond classical varying-coefficient
models.

These limits give us a sense of where we can gain the most from multilevel
modeling—where it is worth the effort of expanding a classical regression in this
way. However, there is little risk from applying a multilevel model, assuming we are
willing to put in the effort to set up the model and interpret the resulting inferences.

11.6 Bibliographic note

Several introductory books on multilevel models have been written in the past
decade in conjunction with specialized computer programs (see Section 1.5), in-
cluding Raudenbush and Bryk (2002), Goldstein (1995), and Snijders and Bosker
(1999). Kreft and De Leeuw (1998) provide an accessible introduction and a good
place to start (although we do not agree with all of their recommendations). These
books have a social science focus, perhaps because it is harder to justify the use
of linear models in laboratory sciences where it is easier to isolate the effects of
individual factors and so the functional form of responses is better understood.
Giltinan and Davidian (1995) and Verbeke and Molenberghs (2000) are books on
nonlinear multilevel models focusing on biostatistical applications.

Another approach to regression with multilevel data structures is to use classical
estimates and then correct the standard errors to deal with the dependence in the
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data. We briefly discuss the connection between multilevel models and correlated-
error models in Section 12.5 but do not consider these other inferential methods,
which include generalized estimating equations (see Carlin et al., 2001, for a com-
parison to multilevel models) and panel-corrected standard errors (see Beck and
Katz, 1995, 1996).

The articles in the special issue of Political Analysis devoted to multilevel mod-
eling (Kedar and Shively, 2005) illustrate several different forms of analysis of mul-
tilevel data, including two-level classical regression and multilevel modeling.

Gelman (2005) discusses difficulties with the terms “fixed” and “random” effects.
See also Kreft and De Leeuw (1998, section 1.3.3), for a discussion of the multiplicity
of definitions of fixed and random effects and coefficients, and Robinson (1998) for
a historical overview.

The child support example comes from Nepomnyaschy and Garfinkel (2005). The
teenage smoking example comes from Carlin et al. (2001), who consider several
different models, including a multilevel logistic regression.

11.7 Exercises

1. The file apt.dat in the folder rodents contains data on rodent infestation in
a sample of New York City apartments (see codebook rodents.doc). The file
dist.dat contains data on the 55 “community districts” (neighborhoods) in the
city.

(a) Write the notation for a varying-intercept multilevel logistic regression (with
community districts as the groups) for the probability of rodent infestation
using the individual-level predictors but no group-level predictors.

(b) Expand the model in (a) by including the variables in dist.dat as group-level
predictors.

2. Time-series cross-sectional data: download data with an outcome y and predic-
tors X in each of J countries for a series of K consecutive years. The outcome
should be some measure of educational achievement of children and the predic-
tors should be a per capita income measure, a measure of income inequality, and
a variable summarizing how democratic the country is. For these countries, also
create country-level predictors that are indicators for the countries’ geographic
regions.

(a) Set up the data as a wide matrix of countries X measurements (as in Figure
11.6).

(b) Set up the data as two matrices as in Figure 11.7: a long matrix with JK
rows with all the measurements, and a matrix with J rows, with information
on each country.

(c) Write a multilevel regression as in (11.5)—(11.7). Explain the meaning of all
the variables in the model.

3. The folder olympics has seven judges’ ratings of seven figure skaters (on two cri-
teria: “technical merit” and “artistic impression”) from the 1932 Winter Olympics.

(a) Construct a 7 X 7 x 2 array of the data (ordered by skater, judge, and judging
criterion).

(b) Reformulate the data as a 98 x4 array (similar to the top table in Figure 11.7),
where the first two columns are the technical merit and artistic impression
scores, the third column is a skater ID, and the fourth column is a judge ID.
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(¢) Add another column to this matrix representing an indicator variable that
equals 1 if the skater and judge are from the same country, or 0 otherwise.

4. The folder cd4 has CD4 percentages for a set of young children with HIV who
were measured several times over a period of two years. The dataset also includes
the ages of the children at each measurement.

(a) Graph the outcome (the CD4 percentage, on the square root scale) for each
child as a function of time.

(b) Each child’s data has a time course that can be summarized by a linear fit.
Estimate these lines and plot them for all the children.

(¢) Set up a model for the children’s slopes and intercepts as a function of
the treatment and age at baseline. Estimate this model using the two-step
procedure—first estimate the intercept and slope separately for each child, then
fit the between-child models using the point estimates from the first step.
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