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APPENDIX A

Six quick tips to improve your regression
modeling

A.1 Fit many models

Think of a series of models, starting with the too-simple and continuing through
to the hopelessly messy. Generally it’s a good idea to start simple. Or start com-
plex if you’d like, but prepare to quickly drop things out and move to the simpler
model to help understand what’s going on. Working with simple models is not a
research goal—in the problems we work on, we usually find complicated models
more believable—but rather a technique to help understand the fitting process.

A corollary of this principle is the need to be able to fit models relatively quickly.
Realistically, you don’t know what model you want to be fitting, so it’s rarely a
good idea to run the computer overnight fitting a single model. At least, wait until
you’ve developed some understanding by fitting many models.

A.2 Do a little work to make your computations faster and more
reliable

This sounds like computational advice but is really about statistics: if you can
fit models faster, you can fit more models and better understand both data and
model. But getting the model to run faster often has some startup cost, either in
data preparation or in model complexity.

Data subsetting

Related to the “multiple model” approach are simple approximations that speed
the computations. Computers are getting faster and faster—but models are getting
more and more complicated! And so these general tricks might remain important.
A simple and general trick is to break the data into subsets and analyze each subset
separately. For example, break the 85 counties of radon data randomly into three
sets of 30, 30, and 25 counties, and analyze each set separately.

The advantage of working with data subsets is that computation is faster on data
subsets, for two reasons: first, the total data size n is smaller, so each regression
computation is faster; and, second, the number of groups J is smaller, so there are
fewer parameters, and the Gibbs sampling requires fewer updates per iteration.

The two disadvantages of working with data subsets are: first, the simple incon-
venience of subsetting and performing separate analyses; and, second, the separate
analyses are not as accurate as would be obtained by putting all the data together
in a single analysis. If computation were not an issue, we would like to include all
the data, not just a subset, in our fitting.

In practice, when the number of groups is large, it can be reasonable to perform
an analysis on just one random subset, for example one-tenth of the data, and
inferences about the quantities of interest might be precise enough for practical
purposes.
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Redundant parameterization

Sections 19.4–19.5 discuss redundant additive and multiplicative parameterizations.
These steps add extra parameters to a Bugs model, and can be confusing at first,
but can really pay off in speed of computation. In addition, the recentering and scal-
ing required in defining the adjusted parameters can have a convenient statistical
interpretation in terms of finite-population inference for the groups in the dataset.

Fake-data and predictive simulation

When computations get stuck, or a model does not fit the data, it is usually not
clear at first if this is a problem with the data, the model, or the computation. Fake-
data and predictive simulation (discussed in general in Chapter 8 and for multilevel
models in Sections 16.7 and 24.1–24.2) are effective ways of diagnosing problems.
First use fake-data simulation to check that your computer program does what it
is supposed to do, then use predictive simulation to compare the data to the fitted
model’s predictions.

A.3 Graphing the relevant and not the irrelevant

Graphing the fitted model

Graphing the data is fine (see Appendix B) but it is also useful to graph the
estimated model itself (see lots of examples of regression lines and curves throughout
this book). A table of regression coefficients does not give you the same sense
as graphs of the model. This point should seem obvious but can be obscured in
statistical textbooks that focus so strongly on plots for raw data and for regression
diagnostics, forgetting the simple plots that help us understand a model.

Don’t graph the irrelevant

Are you sure you really want to make those quantile-quantile plots, influence dia-
grams, and all the other things that spew out of a statistical regression package?
What are you going to do with all that? Just forget about it and focus on something
more important. A quick rule: any graph you show, be prepared to explain.

A.4 Transformations

Consider transforming every variable in sight:
• Logarithms of all-positive variables (primarily because this leads to multiplicative

models on the original scale, which often makes sense)
• Standardizing based on the scale or potential range of the data (so that coeffi-

cients can be more directly interpreted and scaled); an alternative is to present
coefficients in scaled and unscaled forms

• Transforming before multilevel modeling (thus attempting to make coefficients
more comparable, thus allowing more effective second-level regressions, which in
turn improve partial pooling).

Plots of raw data and residuals can also be informative when considering transfor-
mations (as with the log transformation for arsenic levels in Section 5.6).

In addition to univariate transformations, consider interactions and predictors
created by combining inputs (for example, adding several related survey responses
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to create a “total score”). The goal is to create models that could make sense (and
can then be fit and compared to data) and that include all relevant information.

A.5 Consider all coefficients as potentially varying

Don’t get hung up on whether a coefficient “should” vary by group. Just allow it
to vary in the model, and then, if the estimated scale of variation is small (as with
the varying slopes for the radon model in Section 13.1), maybe you can ignore it if
that would be more convenient.

Practical concerns sometimes limit the feasible complexity of a model—for exam-
ple, we might fit a varying-intercept model first, then allow slopes to vary, then add
group-level predictors, and so forth. Generally, however, it is only the difficulties of
fitting and, especially, understanding the models that keeps us from adding even
more complexity, more varying coefficients, and more interactions.

A.6 Estimate causal inferences in a targeted way, not as a byproduct of
a large regression

Don’t assume that a regression coefficient can be interpreted causally. If you are
interested in causal inference, consider your treatment variable carefully and use the
tools of Chapters 9, 10, and 23 to address the difficulties of comparing comparable
units to estimate a treatment effect and its variation across the population. It can
be tempting to set up a single large regression to answer several causal questions
at once; however, in observational settings (including experiments in which certain
conditions of interest are observational), this is not appropriate, as we discuss at
the end of Chapter 9.





APPENDIX B

Statistical graphics for research and
presentation

Statistical graphics are sometimes summarized as “exploratory data analysis” or
“presentation” or “data display.” But these only capture part of the story. Graphs
are a way to communicate graphical and spatial information to ourselves and others.
Long before worrying about how to convince others, you first have to understand
what’s happening yourself.

Why to graph

Going back through the dozens of examples in this book, what are our motivations
for graphing data and fitted models? Ultimately, the goal is communication (to self
or others). More immediately, graphs are comparisons (to zero, to other graphs, to
horizontal lines, and so forth). We “read” a graph both by pulling out the expected
(for example, the slope of a fitted regression line, the comparisons of a series of
confidence intervals to zero and each other) and the unexpected.

In our experience, the unexpected is usually not an “outlier” or aberrant point
but rather a systematic pattern in some part of the data. For example, consider
the binned residual plots in Section 5.6 for the well-switching models. There was
an unexpectedly low rate of switching from wells that were just barely over the
dangerous level for arsenic, possibly suggesting that people were moderating their
decisions when in this ambiguous zone, or that there was other information not
included in the model that could explain these decisions.

Often the most effective graphs simply show us what a fitted model is doing.
Consider, for example, the graphs in Section 6.5 of the ordered regression and the
data for the storable voting experiment or in Section 14.1 of the data-level logistic
model and state-level linear model for political opinions.

We consider three uses of graphics in statistical analysis:

1. Displays of raw data, often called “exploratory analysis.” These don’t have to
look pretty; the goal is to see things you did not expect or even know to look
for.

2. Graphs of fitted models and inferences, sometimes overlaying data plots in order
to understand model fit, sometimes structuring or summarizing inference for
many parameters to see a larger pattern. In addition, we can plot simulations
of replicated data from fitted models and compare them to comparable plots of
raw data.

3. Graphs presenting your final results—a communication tool. Often your most
important audience here is yourself—in presenting all of your results clearly on
the page, you’ll suddenly understand the big picture.
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Figure B.1 Data from the Electric Company experiment, from Figure 9.4 on page 174,
displayed in a different orientation to allow easier comparison between treated and control
groups in each grade. For each histogram, the average is indicated by a vertical line.

B.1 Reformulating a graph by focusing on comparisons

Creative thinking might be needed to display numerical data effectively, but your
creativity can sometimes be enhanced by carefully considering your goals. Just as
in writing, you have to rearrange your sentences sometimes to make yourself clear.
For example, consider the graph of the Electric Company data in Figure 9.4 on page
174. Rather than try to cleverly put all the points on a single plot, we arrange them
on a 4 × 2 grid, using a common scale for all the graphs to facilitate comparisons
among grades and between treatment and control. We also extend the axis all the
way to zero, which is not strictly necessary, in the interest of clarity of presentation.
In the Electric Company example, as in many others, we are not concerned with
the exact counts in the histogram; thus, we simplify the display by eliminating y-
axes, and we similarly clarify the x-axis by removing tick marks and using minimal
labeling.

Graphs as comparisons

All graphical displays can be considered as comparisons. When making a graph,
line things up so that the most important comparisons are clearest. Comparisons
are clearest when scales are lined up. Considering Figure 9.4: for each of the two
treatments, the histograms for the four grades are lined up and can be directly
compared.

In Figure 9.4, we primarily want to compare treatment to control. The comparison
of grades is useful—if for no other reason than to ground ourselves and confirm
that scores are higher in the higher grades—but we are really more interested in
the comparison of treatment to control within each grade.

Thus, it might be more helpful to arrange the histograms as shown in Figure B.1,
with treatment and control aligned for each grade. With four histograms arranged
horizontally on a page, we need to save some space and so we restrict the x-axes to
the combined range of the data. We also indicate the average value in each group
with a vertical line to allow easier comparisons of control to treatment in each
grade.

No single graph does it all

Sometimes it makes sense to withhold information in order to present a clearer
picture. Figure 9.4 (or Figure B.1) shows the outcomes for each classroom in the
Electric Company experiment. The scatterplots in Figure 9.6 show pre-test data
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as well, revealing a high correlation between pre-test and post-test in each grade.
The scatterplots certainly show important information, and we are glad to be able
to show them, but we prefer the histograms as a starting point for seeing the com-
parison between treatment and control—at least for this randomized experiment in
which the two groups are well balanced.

Graphs of fitted models

It can be helpful to graph a fitted model and data on the same plot, as we have
done throughout the book. See Chapters 3–5 for many simple examples, Figure 6.3
on page 120 for a more elaborate example, and Chapters 12–13 for similar plots of
multilevel models.

We also like to graph sets of estimated parameters (see, for example, in Figure 4.6
on page 74). Graphs of parameter estimates can be thought of as proto-multilevel
models in that the graph suggests a relation between the y-axis (the parameter
estimates being displayed) and the x-axis (often time, or some other index of the
different data subsets being fit by a model). These graphs contain an implicit model,
or a comparison to an implicit model, the same way that any scatterplot contains
the seed of a regression or correlation model.

Another use of graphics with fitted models is to plot predicted datasets and
compare them visually to actual data, as discussed in Sections 8.3–8.4. For data
structures more complicated than simple exchangeable batches or time series, plots
can be tailored to specific aspects of the models being checked, as in Section 24.2.
As a special case, plots of residuals and binned residuals can be seen as visual
comparisons to the hypothesis that the errors from a model are independent with
zero mean.

B.2 Scatterplots

Units

When describing or designing a scatterplot, the first thing to decide is the unit of
analysis. That is “each dot represents a student” or “each dot represents a county”
or whatever. The x and y values have no interpretation until you define the units.

The x and y axes

To get yourself up to speed, start by applying to scatterplots everything you know
about linear regression. There’s an x variable and a y variable defined on a bunch
of units, and you’re trying to summarize the average relation between x and y or
alternatively to predict y from x where “prediction” includes uncertainty as well as
point estimation. This issue is well covered in many recent introductory textbooks
which introduce scatterplots first and then move to regression.

Let’s start with some bad ideas. First, there is something called a scatterplot
matrix for multivariate data, which is a set of scatterplots of all pairs of variables.
This can be informative, but it’s like regressing every variable versus every other
variable. As with regression, we often learn more from scatterplots that are more
carefully chosen. For example, if two variables have a time or causal order, we
usually prefer to put “before” on the x-axis and “after” on the y-axis.

A common strategy that particularly disturbs us is plotting by index number,
for example, plotting data from the 50 states in alphabetical order. In this case the
x variable contains little or no information, and the plot is comparable to running
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Figure B.2 Length of longest run (sequence of successive heads or successive tails) versus
number of runs (sequences of heads or tails) in each of 2000 independent simulations of
100 coin flips. Each dot on the graph represents a sequence of 100 coin flips; the points
are jittered so they do not overlap. When plotted on this graph, the results from an actual
sequence of 100 coin flips will most likely fall on a square with a large number of dots.
In contrast, a sequence of heads and tails that is artificially created to look “random” will
probably have too many runs that are not long enough, and hence will fall on the lower
right of this graph.

a regression on random numbers. An example that is not necessarily bad is using,
as the x variable, the order of entry of units into the study. This can make sense
if one expects or fears time trends (but it would probably be better to plot versus
time itself rather than merely order). If there are no major time patterns, however,
the choice of x variable might better be spent elsewhere.

You can make as many plots as you want (or as your paper budget allows), but
it is useful to think a bit about each plot, just as it is useful to think a bit about
each regression you run. This is as good a time as any to recommend that along
with every regression you run, you should make a scatterplot. And, in addition, you
should be making residual plots where necessary. We’ll get to that later.

Jittering

If several data points have the same data values, add a small random number to
each so that they do not fall on top of each other. This is called jittering. Jitter
just enough so that the discrete nature of the data is still clear. For example, if
data points are integers, we might add a random uniform number between −0.3
and +0.3 to each x and y value (see Figure B.2). Methods such as plotting 2’s,
3’s, or cute symbols for multiple data points can be misleading visually, and from a
theoretical perspective are unsatisfying in that the display of any unit then depends
too strongly on the other data values.

Symbols and auxiliary lines

The symbols of a scatterplot are important because they correspond to the units of
analysis in your studies. It can be appropriate to use more than one scatterplot for
multilevel data structures. At least in theory you can display five variables easily
with a scatterplot: x, y, symbol, symbol size, and symbol color.

Symbols are best for discrete variables, and it’s worth putting a little effort into
making these symbols distinguishable and also appropriate. For example, we used
open circles to indicate open seats in Figure 7.4. In plotting data from an experiment
or observational study, you can use different large symbols for treated units and
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Figure B.3 Effect of redistricting on partisan bias. Each symbol represents a state and
election year, solid circles, open circles, and crosses representing Democratic, bipartisan,
and Republican redistricting. The small dots are the control cases—state-years that did not
immediately follow a redistricting. Lines show fit from a regression model.

dots for controls (see Figure B.3). Symbol size can be useful, but it is not always
as flexible as one might hope, and we have not had much success in using symbol
size for continuous variables.

Color is just great and you should use it as much as possible, even though for
printing reasons we do not use color in this book.

We sometimes have had success using descriptive symbol names (for example,
two-letter state abbreviations). But if there are only two or three categories, we’re
happier with visually distinct symbols. For example, to distinguish men and women,
we would not use M and W or even M and F. In genealogical charts, men and
women are often indicated by open squares and open circles, respectively, but even
these symbols are hard to tell apart in a group. We prefer clearly distinguishable
symbols—for example, in Figure B.5, open circles for men and solid circles for
women.

These suggestions are all based on our subjective experience and attempts at
logical reasoning; as far as we know, they have not been validated (or disproved) in
any systematic study. We think such a study would be a good idea.

Figure B.3 shows an example of one of the most common regressions: a compari-
son of treatments to control with a before and after measurement. In this case, the
units are state legislative elections, and the plot displays a measure of “partisan
bias” in two successive election years. The “treatments” are different kinds of redis-
tricting plans, and the “control” points (indicated by dots on the figure) indicate
pairs of elections with no intervening redistricting. We display all the data and also
show the regression lines on the same scale. As a matter of fact, we did not at first
think of fitting nonparallel regression lines; it was only after making the figure and
displaying parallel lines that we realized that nonparallel lines (that is, an interac-
tion between the treatment and the “before” measurement) are appropriate. The
interaction is, in fact, crucial to the interpretation of these data: (1) when there is
no redistricting, partisan bias is not systematically changed; (2) the largest effect of
any kind of redistricting is to bring partisan bias, on average, to near zero. The lines
and points together show this much more clearly than any numerical summary.
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Another useful kind of line to display is a “default line,” which is usually a
horizontal line at 0 or a 45-degree line indicating equality of x and y.

When a graph has multiple lines, label them directly, not using symbol codes and
a key (which requires the reader—and you—to go back and forth between graph
and key). Examples of our recommended approach include Figure 5.11 on page 91,
Figure 14.11 on page 313, and Figure 15.2 on page 328.

Shape of the plotting region

The shape of a plot conveys information implicitly. When x and y are the same units
on the same scale, we use a square plot with the same scale on the two axes even
if that means that large parts of the plot are blank (see Figure B.3). Conversely,
if x and y are not the same variable, we are careful not to use a square plot so as
not to implicitly send the wrong message. When we are presenting several plots of
different variables, we sometimes use dimensions for the different plots as a visual
cue that they have different meanings.

Displaying the results of model fitting

In a regression with one or two inputs, it is possible to display essentially all the
information (all the information if one of the variables is discrete) in a single plot.
When additional predictors are present, we have to summarize the data in some
way. Ideally, the outcome variable is displayed on the y-axis, symbols indicate the
input variable of interest (think of treatments and control here), and the x-axis
displays predicted values or some other combination of all the variables that are
being controlled for.

When there is more than one control variable, one approach is to plot on the
x-axis the linear predictor created from all the control variables with coefficients
estimated from their regression models. For example, with a regression model of the
form yi = β0+β1Xi1+β2Xi2+β3Xi3 +ϵi, one can plot yi versus β0+β2Xi2+β3Xi3

with different symbols for different values of Xi1. In that plot one would plot dotted
lines of y = c + x, for c = β1x1 for the different values for x1, to illustrate the
expected relationship. Figure B.3 shows an example with one predictor that plays
the role of “treatment” and other “background” predictors which are combined in
the x-axis.

More generally we can overlay the model on a plot of data (conversely when
plotting a modeled relationship, we try to include data on this plot appropriately),
even if it takes a bit of work to figure out how to do this reasonably. In our own
work such plots have been crucial to our understanding, as illustrated by Figure
B.3.

Maps

Often when you have a map, you’re better off with a scatterplot (but of course
there’s no reason to throw away the map). For example, if you have data on the
occurrence of some medical condition by location and you map it to see whether
it’s clustered in low-income areas, it might make more sense to plot rates versus
income. But the map might be useful in suggesting which variables to consider
plotting.

With this use of maps as an explanatory tool in mind, we focus on mapping
methods that will reveal unexpected patterns but only when something real is
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Figure B.4 Summary of a forecast of the 1992 U.S. presidential election performed one
month before the election. (a) States that Bill Clinton was forecasted to win are shaded.
(b) For each state, the proportion of the box that is shaded represents the probability of
Clinton winning the state; the width of the box is proportional to the number of electoral
votes for the state. The second map conveys more information and is also less misleading.

going on. Maps are often tricky to read because they can show spurious patterns.
For example, a map of the United States shading in different counties with different
colors inevitably draws attention to the counties that are geographically larger and
perhaps also those that are unusually shaped. At the very least one could replace
the shading by a small colored circle in each county, perhaps with larger circles for
more populous counties. (However, this would not be appropriate for a geological
map of oil reserves: we are usually thinking about social statistics here.) Another
approach is to plot “thermometers” within a geographic unit (see Figure B.4).

The problem of unequal population density is sometimes attacked by distorted
maps that approximately preserve the shapes of, for example, states, while making
their areas proportional to population. We find these maps more distracting than
useful because they draw attention to the shapes, which are usually nothing that
anybody cares about.

In addition to any possible distorted geographical effects, there are more subtle
difficulties in mapping which relate to problems of summarizing inferences with
point estimates (see, for example, Gelman and Price, 1999).

Calibration plots

A calibration plot is a plot of observed values on the y-axis versus expected (fore-
casted) values on the x-axis. If all is well, the expected value of y given x in such
a plot is just x. So we make this a square plot with identical axes and a compari-
son line at y = x. See, for example, Figure B.5, which evaluates the calibration of
students’ guesses of their exam scores.

In general, a forecast supplies a distribution, not just a point estimate, for each
data point. In this case, the “expected” or “forecasted” value for any datum is just
the mean (or expectation) of the forecast distribution for the datum. The desired
relation is E(y|x) = x.

When forecasting discrete outcomes, however, the problem gets more compli-
cated: the expected values are continuous but the observed values are discrete (for
example, for binary data, the observed values are 0’s and 1’s, and the expected
values are proportions between 0 and 1). The calibration plot is then virtually un-
readable, as the points cluster in discrete values on the y-axis. (See Figure B.6a
for an example.) So instead, it is standard practice to order the x values and then
divide them into categories or bins j = 1, . . . , J . In each category we compute the
averages x̄j and ȳj and then plot the J values of (x̄j , ȳj). Figure B.6b shows an
example in which the data can take on 5 possible outcomes.
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Figure B.5 Actual versus guessed midterm exam scores for a class of 53 students. Each
symbol represents a student; empty circles are men, solid circles are women, and ? has
unknown sex. The 45◦ line represents perfect guessing, and the dotted line is the linear
regression of actual score on guessed score. (The separate regression lines for men and
women were similar.) Both men and women tended to perform worse than their guesses.
That the slope of the regression line is less than 1 is an instance of the “regression effect”
(see Section 4.3): if a student’s guessed score is x points higher than the mean guess, then
his or her actual score is, on average, only about 0.6x higher than the mean score. A square
scatterplot is used because the horizontal and vertical axes are on the same scale.
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Figure B.6 (a) Observed versus expected pain relief scores (0 = no pain relief, . . ., 5
= complete pain relief) for data from the analysis of Sheiner, Beal, and Dunne (1997).
Observed pain relief scores are jittered. (b) Average observed versus averaged expected pain
relief scores, with data divided into 20 equally sized bins defined by ranges of expected pain
relief scores.

Whether in the continuous or discrete case, we prefer to put “observed” on the
y-axis and “expected” on the x-axis (rather than the reverse), because in the cal-
ibration context, the expected value is the predictor and the observed value is the
outcome. See Section 8.2 for related discussion of residual plots.

Residual plots

If all is going well, the points on the calibration plot will mostly fall near the 45-
degree line, meaning there will be much empty space on the plot. A natural next step
is to plot y−x versus x; that is, “deviation from predicted” versus “predicted.” This
is the residual plot. In fact “deviation from predicted” can be plotted versus just
about anything, not just predicted values (see Figure B.7). Residual plots should
not be square and should have a dotted line at y = 0 rather than y = x.
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Figure B.7 Difference between actual and guessed midterm exam scores, plotted against
the order of finishing the exam. The exact order is only relevant for the first 20 or 25
students, who finished early; the others all finished within five minutes of each other at
the end of the class period. Each symbol represents a student; empty circles are men, solid
circles are women, and ? has unknown sex. The horizontal line represents perfect guessing.
The students who finished early were highly overconfident, whereas the other students were
less biased in their predictions.
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Figure B.8 (a) Residuals (observed - expected) of pain relief scores versus expected pain
relief scores from Figure B.6. (b) Average residuals versus expected pain scores, with mea-
surements divided into 20 equally sized bins defined by ranges of expected pain scores. The
average prediction errors are relatively small (as can be seen from the scale of the y-axis),
but with a consistent pattern that low predictions are too low and high predictions are too
high.

As with calibration plots, it is generally a good idea to bin the points in a residual
plot if the outcomes are discrete (see Figure B.8).

B.3 Miscellaneous tips

We conclude with some suggestions derived from our experiences using graphs in
data analysis, first presenting a few ideas that have proved generally useful, then
going through a variety of specific techniques through a series of examples.

A display of several time series of opinion polls

Each subgraph of Figure B.9 shows a time series of the support in the polls for the
Republican candidate for U.S. president, as a proportion of the two-party support,
for a given election year, in the months leading up to the election.

Tip: Put many little graphs on the same page. Do it with a slick graphics package
if possible; otherwise, use scissors, tape, and a reducing copy.
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Figure B.9 Presidential trial-heat polls. The solid line in each plot is the proportion who
would vote for the Republican candidate for president, among those who report a preference
for the Democratic or Republican candidates. The 1992 and 1998 graphs include data from
all available nationwide polls; plots for the other years are from the Gallup Report. The
upward arrow marks the time of the Republican convention, and the downward arrow
marks the time of the Democratic convention. The triangle at the end of each time series
indicates what actually happened in the election.

Tip: When you have multiple graphs, use a common scale.
Tip: Put a light line to indicate what “no effect” would be. (There is a dotted

line at 50% in each graph.)
Tip: It’s worth putting in little details and doing it right. For example, each

graph also indicates, with arrows, the times of the political conventions. The Re-
publican conventions are shown with up arrows (because the Republicans improve
in the polls then), and the Democratic conventions are indicated with down arrows
(corresponding to the drop in the Republican poll numbers).
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Tip: Keep the lines on a graph thin, even if each plot has only one line. A fat
line conveys no more information and just makes the information harder to see.

By comparison, we got the data from printed reports from Gallup that had graphs
like ours for each election year, but with two thick lines on each graph displaying the
Democratic and the Republican shares of the polls. For our purposes, we didn’t care
about undecideds and third parties, so we just display the Republican proportion
of the two-party support.

Tip: Repeat axis labels as necessary to make mini-graphs easier to read. Once
you know what they say, your eye easily ignores the labels.

We originally created this graph to help us understand the history of the pre-
election polls at a glance—exploratory data analysis—and later we fixed it up for
final presentation. (In the original, exploratory, stage, we wrote in the arrows by
hand.)

Significant digits and uncertainty

When reporting the output from a statistical analysis, you should always imagine
yourself in the position of the reader of the report. It is important not to overwhelm
the reader with irrelevant material. For the simplest (but still important) example,
consider the reporting of numerical results (either alone or in tables).

Do not include too many significant digits in numbers you report. The relevant
comparison is not to an absolute number of decimal places but to the uncertainty
and variability in the numbers being presented. For example, the confidence interval
[3.276, 6.410] would be more clearly written as [3.3, 6.4]. (An exception is that it
makes sense to save lots of extra digits for intermediate steps in computations. For
example, 51.7643 − 51.7581.) A related issue is that you can often make a list or
table of numbers more clear by first subtracting out the average (or for a table, row
and column averages). The appropriate number of significant digits depends on the
uncertainty. But in practice, three digits are usually enough because if more were
necessary, we would subtract out the mean first.

Maybe the biggest source of too many significant digits is from computer output.
One solution is to set the rounding in the computer program (for example in R,
options(digits=2)).

Titles and captions

All titles and axis labels should be meaningful. In addition, each figure should be
accompanied by a caption so that it makes sense even for the reader who skips the
rest of the article.

Histograms

Histograms are for plotting values of a single variable. Whenever possible, use a
scatterplot, but sometimes it is convenient look at just one variable, especially when
arranged in a grid such as in Figure B.1 on page 552. When looking at one variable,
we prefer histograms to snazzier methods such as density estimation because we
feel more connected to the actual numerical values this way.

There’s some confusion on this point. The purpose of a histogram is to display a
set of numbers, not to approximate an underlying distribution function. It’s a good
idea to divide your histogram into more bins than “necessary” so that you can get
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Figure B.10 Histograms of the forecast proportion of the two-party vote for Bill Clinton
in 1992 in each of the 50 states and the District of Columbia, displayed with two different
choices of bin width: (a) the bin width automatically assigned by R, (b) the bin width set
manually with the R command hist(y,breaks=seq(30,90,5)).

an idea of the variability in the histogram itself. Do not use the default bin width
in R (see Figure B.10).

General advice

Plot numerical data and inferences as graphs, not as tables. A good example is the
multilevel logistic regression of vote preference on demographic and geographic pre-
dictors, with graphs on pages 306–307 that show coefficient estimates and standard
errors, along with curves of the fitted model and data. Or, for a simpler example,
Figure 15.9 on page 337 graphs the inference from a simple regression.

Multiple plots per page. A graph can almost always be made smaller than you
think and still be readable. This then leaves room for more plots on a grid, which
then allows more patterns to be seen at once and compared.

Don’t plot the index numbers. For example, Figure 14.9 on 312 plots estimates for
the 50 states versus average state income, rather than simply listing the states in
alphabetical order. For another example, the dogs in Figure 24.1 are ordered by the
time of their last shock, rather than by their ID numbers, which turn out to have
no meaning in this problem.

Never display a graph you can’t explain. Give a full caption for every graph (as
we try to do in this book). This explains to yourself and others what you are trying
to show and what you have learned from each plot. Avoid displaying graphs that
have been made simply because they are conventional. For example, regressions are
commonly equipped with quantile-quantile plots of residuals, but for most applica-
tions the information in such a plot is irrelevant, and a distraction from the more
relevant results that could be presented.

B.4 Bibliographic note

For statistical graphics in R, the book by Murrell (2005) is an excellent overview
and starting point. Fox (2002) is also helpful in that it focuses on regression models.

On the topic of statistical graphics more generally, much of the most important
and influential work has appeared in books, including Bertin (1967, 1983), Cham-
bers et al. (1983), Cleveland (1985, 1993), Tufte (1983, 1990), and Wainer (1984,
1997).

There are various systematic ways of studying statistical graphics. One useful
approach is to interpret graphs as model checking (for example, if residuals are
not independent of x, then there is some model violation), as we have discussed
in Chapter 24. Another approach is to perform experiments to find out how well
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people can gather information from various graphical displays (for example, are
line plots easier to read than histograms). This is discussed by Cleveland (1985).
More research is needed on both these approaches: relating to probability models is
important for allowing us to understand graphs and devise graphs for new problems;
and effective display is important for communicating to ourselves as well as others.

For some ideas on the connections between statistical theory, modeling, and
graphics, see Tukey (1977), Wilkinson (2005), and (for our own perspective) Gelman
(2004a).

Some of the ideas considered in this chapter are explored by Gelman, Pasarica,
and Dodhia (2002), Wand (1997), Wainer (2001), and Friendly and Kwan (2003).
Ehrenberg (1978) and Tukey (1977) discuss tabular displays in detail. An important
topic not discussed in the present book is dynamic graphics; see Buja et al. (1988)
and Buja, Cook, and Swayne (1999).

B.5 Exercises

1. Find an example of a published article in a statistics or social science journal in
which too many significant digits are used.

2. Find an example of a published article in a statistics or social science journal in
which there is not a problem with too many significant digits being used.

3. Take any data analysis exercise from this book and present the raw data in several
different ways. Discuss the advantages and disadvantages of each presentation.

4. Take any data analysis exercise from this book and present the fitted model in
several different ways. Discuss the advantages and disadvantages of each presen-
tation.
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