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Abstract. Null-hypothesis significance testing (NHST) is the primary means by which data are analyzed and conclusions made, partic-
ularly in the social sciences, but in other sciences as well (notably ecology and economics). Despite this supremacy however, numerous
problems exist with NHST as a means of interpreting and understanding data. These problems have been articulated by various observers
over the years, but are being taken seriously by researchers only slowly, if at all, as evidenced by the continuing emphasis on NHST in
statistics classes, statistics textbooks, editorial policies and, of course, the day-to-day practices reported in empirical articles themselves
(Cumming et al., 2007). Over the past several decades, observers have suggested a simpler approach – plotting the data with appropriate
confidence intervals (CIs) around relevant sample statistics – to supplement or take the place of hypothesis testing. This article addresses
these issues.
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This article is divided into two sections. In the first section,
we review a number of what we consider to be serious
problems with NHST, focusing particularly on ways by
which NHST could plausibly distort one’s conclusions and,
ultimately, one’s understanding of the topic under investi-
gation. In this first section, we also describe confidence
intervals (CIs) and the degree to which they address the
problems of NHST. In the second section, we present em-
pirical data that extend prior findings indicating that what
we consider to be the most serious of these problems – an
unwarranted equation of “failure to reject the null hypoth-
esis” with “the null hypothesis is true” – does indeed influ-
ence and bias interpretations of typical experimental re-
sults. In two experiments we compare the degree to which
such false conclusions issue from results described princi-
pally by way of NHST versus from results illustrated prin-
cipally by way of visually represented confidence intervals.

Part 1: Problems with NHST

Lurking close to the heart of scientific practice is uncer-
tainty: Any sophisticated scientist would readily agree that
the interpretation of a result coming out of a scientific study
must be tempered with some probabilistic statement that
underscores and quantifies such uncertainty. Recognition
of the underlying uncertainty attendant to any scientific

conclusion is essential to both scientific efficiency and sci-
entific integrity; conversely, failure to recognize such un-
certainty is bound to engender misunderstanding and bias.
One theme that runs through this article is that NHST has
the effect of sweeping such uncertainty under the rug,
whereas use of CIs, especially when presented graphically,
leaves the uncertainty in the middle of the floor for all to
behold.

In many scientific studies – indeed, in the majority of
those undertaken in the social sciences – uncertainty is
couched in terms of the relation between a set of sample
statistics measured in an experiment and the underlying
population parameters of which the sample statistics are
estimates. In what follows, we will, for the sake of exposi-
tional simplicity, constrain our discussion to the relations
between sample and population means, although our argu-
ments apply to any statistic-parameter relation.

In a typical experiment, there are J conditions and, ac-
cordingly, J sample means (the Mjs) are measured. These
Mjs are presumed to be estimates of the J corresponding
population means (the μjs). Of fundamental interest in the
experiment (although rarely stated explicitly as such) is the
pattern of the μjs over the J conditions. The experimenter,
of course, does not know what the μjs are; all that he or she
has available are the measured Mjs. Thus, the uncertainty
lies in lack of knowledge about the expected discrepancy
between each Mj and the corresponding μj of which the Mj

is an estimate. If, in general, the uncertainty is small then
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pattern of the Mjs may be construed as a relatively precise
estimate of the underlying pattern of μjs. Conversely, if the
uncertainty is large, the pattern of the Mjs may be construed
as a relatively imprecise estimate of the underlying pattern
of μjs. Note that “precise” and “imprecise” estimates maps
onto what, within the domain of NHST is normally referred
to as “high” or “low” statistical power.

NHST: A Dichotomization of Conclusions

The process of NHST pits two hypotheses against one an-
other: A specific null hypothesis that is almost always a nil
null, stating that the μjs are all equal to one another and an
alternative hypothesis which, usually, is “anything else.” If
the differences among the Mjs (embodied in “mean squares
between”) are sufficiently large compared to the error vari-
ability observed within groups (embodied in “mean squares
within”) then the null hypothesis is rejected. If mean
squares between is not sufficiently large, then the null hy-
pothesis is not rejected; technically, that is, one is left in a
nonconclusive “limbo” state. Within the context of NHST,
the uncertainty of which we have spoken is compressed
into, and expressed by, a single number, the “p-value”
whose simple, but often misinterpreted meaning is eluci-
dated below.

The NHST process has associated with it some serious
problems. Most have been discussed at length in past com-
mentaries on NHST and we will not rediscuss them in detail
here1. Briefly, they include the following.

The Null Hypothesis Cannot Be Literally True

According to the (typical) null hypothesis, every μj is iden-
tically equal to every other μj. In fact, however, in most
branches of science such a state of affairs cannot be true,
i.e., the μjs will not equal one another to an infinite number
of decimal places. As Meehl (1967), for example, has
pointed out, “Considering . . . that everything in the brain
is connected with everything else, and that there exist sev-
eral “general state-variables” (such as arousal, attention,
anxiety, and the like) which are known to be at least slightly
influenceable by practically any kind of stimulus input, it
is highly unlikely that any psychologically discriminable
situation which we apply to an experimental subject would
exert literally zero effect on any aspect of performance.”
(p. 109). Thus, to reject the null hypothesis as false does
not tell an investigator anything that was not known al-
ready; rather rejecting the null hypothesis allows only the
relatively uninteresting conclusion that the experiment had
sufficient power to detect whatever differences among the
μjs that must have been there to begin with. As an analogy,

no sane scientist would ever make a claim such as “based
on spectrometer results, we can reject the hypothesis that
the moon is made of green cheese.” In this cartoonish con-
text, it is abundantly clear that such a claim would be silly
because the falsity of the hypothesis is so apparent a priori.
Yet a logically isomorphic claim is made whenever one
rejects a null hypothesis.

Misinterpretation of “Rejecting the Null
Hypothesis”

Normally, either implicitly or explicitly, a typical results-
section assertion goes something like, “Based on these da-
ta, we reject the null hypothesis, p < .05.” In normal every-
day discourse, such an assertion would be tantamount to –
and is close to literally – saying, “Given these data, the
probability that the null hypothesis is true is less than .05.”
Of course, as every introductory-statistics student is taught,
this is wrong: The p-value refers to the opposite conditional
probability, and instead implies, “Given that the null hy-
pothesis is true, the probability of getting these (or more
extreme) data is less than .05.” However, in much scientific
discourse, both formal and informal, this critical distinction
is often forgotten, as people are seduced, by endless repe-
titions of “Based on these data we reject the null hypothe-
sis,” into believing, and acting on the validity of, the nor-
mal-discourse interpretation, rather than the nonobvious,
mildly convoluted, statista-speak interpretation of the
phrase.

What Does “p < .05” Mean, Anyway?

A corollary of this problem is in that “p < .05” does not
actually refer to anything very interesting. Typically, the
fundamental goal of NHST is to determine that some null
hypothesis is false (let’s face it; that’s the kind of result that
gets you a full professorship). So knowing the probability
that a null hypothesis is false would be important and, not-
withstanding the serious problem sketched in Point 2
above, might arguably warrant the rigid reliance placed on
p-values for making conclusions. However, because, in
fact, the p-value refers to something more obscure and con-
siderably less relevant – the probability of the data given a
null hypothesis – the importance of the p-value is, within
our scientific culture, highly overemphasized. It is far more
interesting to know (a) the magnitude of the difference or
effect size, (b) the uncertainty associated with our effect
estimate (e.g., standard error or CI), and (c) whether the
estimate is within a clinically important or theoretically
meaningful range. CIs give us (a) and (b) and should at
least lead to thinking about (c).
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Accepting the Null Hypothesis

Above we observed that, “If mean squares between is not
sufficiently large, then the null hypothesis is not rejected;
technically, that is, one is left in a nonconclusive ‘limbo’
state.” In point of fact – and we shall return to this issue in
the experiments that we report below – humans do not like
to be in nonconclusive limbo states, and “fail to reject the
null hypothesis” often, implicitly, morphs into “the null hy-
pothesis is true.” This kind of almost irresistible logical
slippage can, and often does, lead to all manner of interpre-
tational mischief later on. If the statistical power to detect
even a small effect is very high, then one might reasonably
argue that accepting the null is unproblematic, particularly
when a yes/no decision must be made in an applied setting.
In practice, however, statistical power is rarely so high as
to warrant this interpretation (e.g., Sedlmeier & Gigeren-
zer, 1989).

Failure to See the Forest for the Trees

If an experiment includes only two conditions, then the
range of possible (qualitative) states of reality is limited:
Either the two conditions differ or (putting aside, for the
moment, Point 1 above) they do not. Frequently, however,
experiments contain more than two conditions, i.e., in our
notation, J > 2. When this is true, rejecting the null hypoth-
esis reveals virtually nothing about what is of principal in-
terest, namely the underlying pattern of population means.
The typical practice at this point is to carry out a series of
posthoc t tests comparing individual pairs of means, the
result of which is usually a dichotomization of which of the
(Jx(J–1))/2 pairs differ significantly and which do not. We
assert that such a practice (a) encourages the misdeed of
accepting null hypotheses (see Point 4 above) and (b) does
little to provide any intuitive understanding of the overall
nature of the underlying pattern of μjs.

Emphasis on Qualitative Rather than Quantitative
Results

It is a truism that a stronger quantitative result is more in-
formative than a weaker, qualitative result that subsumes
it. For instance, saying that “ingestion of two ounces of
alcohol increased subjects’ mean reaction time by 50 ms
compared to ingestion of one ounce of alcohol” is more
informative than saying, “subjects were slower with two
compared to one ounce of alcohol.” NHST, however, em-
phasizes qualitative conclusions, e.g., “The null hypothesis
of no alcohol effect isn’t true” or “two ounces of alcohol
reduces reaction time by a significantly greater amount
than one ounce.”

This qualitative-at-the-expense-of-quantitative empha-
sis is most readily seen in too many results sections in
which hypothesis-testing results are provided (typically in
the form of p-values) but condition means are not. Failure
to report this crucial information is perhaps more common
than one might think: As reported by Fidler et al., (2005),
in Journal of Consulting and Clinical Psychology – a lead-
ing clinical journal – only 60% of articles using ANOVA
between 1993 and 2001 reported condition means or mean
differences. (We do note that, to JCCP’s credit, this figure
had risen to 82% by 2003, which is certainly an improve-
ment, but one that took serious editorial intervention to
achieve, and is unfortunately not standard practice in most
journals.)

CIs: A Direct Depiction of Uncertainty

CIs are common in many branches of science. A CI con-
structed around a sample statistic is designed to provide an
assessment of the corresponding population parameter’s
whereabouts. They also provide a direct indication of the
uncertainty attendant to interpretation of results that we
sketched earlier: The larger the CI, the greater is the uncer-
tainty. Ideally, this will be depicted visually, as part of a
graphical representation of the experimental results. Unfor-
tunately, graphical presentation of CIs is not currently com-
mon practice in psychology.

CIs address, to varying degrees, the problems with
NHST that we enumerated above2. Here we sketch specif-
ically how they do so.

The Null Hypothesis Cannot Be Literally True

A CI does not presume any single null hypothesis. Instead,
we can investigate multiple hypotheses on a relevant scale,
where values in the interval are more likely than those out-
side, and in turn, values at the center of the interval are
more likely than those at the ends.

Misinterpretation of “Rejecting the Null
Hypothesis”

Again, with a CI, there is no null hypothesis whose rejec-
tion can be misinterpreted. However, as Abelson (1997)
warned, “Under the law of the diffusion of idiocy, every
foolish application of significance testing is sooner or later
going to be translated into a corresponding foolish practice
for confidence limits” (p. 130). If one simply looks for
whether zero, or some other null value, is in or outside of
the interval, then substituting CIs for p-values achieves lit-
tle. Because CIs make precision immediately salient we

F. Fidler & G.R. Loftus: Figures with Error Bars 29

© 2009 Hogrefe & Huber Publishers Zeitschrift für Psychologie / Journal of Psychology 2009; Vol. 217(1):27–37

� Examples of detailed discussion of CI advantages include: Cumming & Fidler (this issue), Cumming & Finch (2005, 2001), Loftus &
Masson (1994), Schmidt (1996).



expect them to help alleviate this dichotomous thinking.
This is one of the questions we address experimentally in
Section 2.

What Does “p < .05” Mean, Anyway?

The analog to α = 05, to which a p-value is compared,
would be the arbitrarily chosen confidence level, typically
95%. A rough analog to the p-interpretation problem with
NHST exists in the construction of CIs. Technically, a CI
– say a 95% CI – is interpreted thusly: In the long run, 95%
of all CIs generated by this specific process will include the
relevant population mean. However it is usually interpreted
as: A CI around a single sample mean has a 95% probabil-
ity of including the relevant population mean.

This latter, somewhat Bayesian, interpretation is certain-
ly more satisfying. However, strict frequentists will quickly
identify it as a misconception and, in fact, a manifestation
of the inverse probability fallacy. This fallacy is also wide-
spread in the interpretation of p-values (Oakes, 1986; Hal-
ler and Krauss, 2002), where it results in the mistaken belief
that p(D|H) = p(H|D). In the context of p-values, the inverse
probability fallacy has had drastic consequences. For ex-
ample, Oakes holds it responsible for the neglect of statis-
tical power (i.e., If I already know the probability of my
hypothesis why would I care about the probability of de-
tecting an effect of some specified size if it was really
there? I wouldn’t!). Our argument here is that the equiva-
lent mistaken belief in CIs, i.e., that there is a 95% proba-
bility a single interval includes the population parameter,
is far less likely to bring damaging consequences. Hoenig
& Heisey made the same argument in 2001:

Although we cannot demonstrate it formally, we suspect that
imperfectly understood confidence intervals are more useful
and less dangerous than imperfectly understood p values and
hypothesis tests. For example, it is surely prevalent that re-
searchers interpret confidence intervals as if they were Bayes-
ian credibility regions; to what extent does this lead to serious
practical problems? (p. 23).

Having said that, it is important to be aware of the limits
of this imperfect definition. ‘A CI around a single sample
mean has a 95% probability of including the relevant pop-
ulation mean’ should only be treated as correct if the exist-
ing data are the only source of information upon which
judgments about population mean locations is based. Ad-
ditional information can render the interpretation suspect.
Imagine, for example, an experiment for which a one-tailed
hypothesis test would be appropriate, e.g., an experiment
in which the effect of amount of alcohol consumption on
reaction time is measured. Longstanding existing knowl-
edge would allow one to disallow the possibility that addi-
tional alcohol decreases reaction time and accordingly a
one-tailed hypothesis test would be carried out. A CI
around a difference score (more alcohol reaction time mi-
nus less alcohol reaction time) might reasonably, however,

extend into negative values. One would not, in this situa-
tion, infer that the CI included the true population value
with the intended 95%.

Accepting the Null Hypothesis

Use of a CI does not entail the dichotomous conclusion of
rejecting or failing to reject any hypothesis. As discussed
above, such interpretations fail to fully exploit the informa-
tion a CI provides. However, construction of CIs provides
one critical piece of relevant information, particularly if
shown visually: It permits an immediate, visual assessment
of how uncertain the observed pattern of sample means is
as an estimate of the underlying pattern of population
means. To the degree that the CIs are small, one infers that
the sample mean pattern is a more precise reflection of the
underlying population mean pattern; conversely, to the de-
gree that CIs are large, one infers that the sample mean
pattern is a less precise reflection of the underlying popu-
lation mean pattern.

As a side product of this CI property, one is in a position
to make judgments about the viability of the null hypothe-
sis or of any other specific hypothesis that one wishes to
consider. Suppose, for example, that the sample mean dif-
ference(s) were sufficiently small that if the corresponding
population mean difference(s) were similarly small, then
the null hypothesis could be “accepted for all intents and
purposes.” This issue is usually relevant in applied settings
where some decision must be made (as in our experiments
as described below). For example, suppose that two clinical
treatments, A and B, were being compared and suppose
further that Treatment A is less expensive than Treatment
B. Obviously, a finding of essentially no difference be-
tween the treatment outcomes (as in Panel 1 of Figure 1),
would suggest supremacy of Treatment A and would, thus,
be interesting and useful. Now suppose that, indeed, the
sample means were relatively close to one another but not
identical, i.e., that the null hypothesis of no difference was
not rejected. Should this null result still be used as a basis
for declaring Treatment A’s superiority, given that it is
cheaper and not statistically different from Treatment B?
Construction of CIs would complete the picture in terms of
the degree to which such a conclusion would be warranted.
Large CIs would demonstrate immediately and intuitively
that such a conclusion might be premature (as in Panel 2
of Figure 1), while small CIs would imply that such a con-
clusion would be safer to make (as in Panel 3 of Figure 1).
We address this issue directly in the experiments that we
report below.

Failure to See the Forest for the Trees

Much of what is relevant to this issue was discussed in our
last point. A presentation of sample means with CIs – par-
ticularly a visual presentation – allows an immediate and
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intuitive assessment of: (a) via the pattern of sample means
itself, the best experimental estimate of the corresponding
pattern of population means and (b) via the CI sizes, the
degree to which the pattern of sample means should be tak-
en seriously as a reflection of the underlying pattern of pop-
ulation means.

Emphasis on Qualitative Rather than Quantitative
Results

Much of what is relevant to this issue was discussed above.
A visual assessment of sample means plus CIs provides not
only a sense of the qualitative pattern of means, but also a
sense of the pattern, which is to say the magnitudes of all
mean differences.

Part 2: Empirically Investigating the
Cognitive Benefits of CIs

A variety of experiments have sought to determine whether
the alleged problems with NHST and the concomitant vir-
tues of using CIs are borne out in actual practice. The for-
mer (i.e., studies of NHST misconceptions) are far more
common and have a much longer history (e.g., Falk &
Greenbaum, 1995; Lecoutre, Poitevineau, & Lecoutre,
2003; Oakes, 1986; Rosenthal & Gatio, 1963) than parallel
studies of CI understanding and interpretation. This imbal-
ance in research is problematic for statistical reform: If the
most common arguments for abandoning p-values are the
severe and robust misconceptions associated with them and
the dichotomous thinking that NHST promotes, then we
should expect evidence that the alternatives offered to re-

place p-values are relatively free of such misconceptions
and lead to a more sophisticated, less dichotomous ap-
proach to interpretation. Yet, recommendations for p-value
replacements or supplements have not been investigated
empirically. The following studies are an attempt to build
such an evidence base.

One of the most serious problems associated with NHST
is interpretation of statistical nonsignificance as evidence
of no effect (see above). This misinterpretation is especial-
ly problematic in disciplines where statistical power is, on
average, low and routinely unreported. We know from Co-
hen (1962) and subsequent studies in that tradition (e.g.,
Sedlmeier & Gigerenzer, 1989; Rossi, 1990) that the sta-
tistical power in psychological studies (for typical, medium
effects) is roughly 50%. We also know from journal studies
that statistical power is reported in less than 5% of psychol-
ogy journal articles (Finch, Cumming, & Thomason, 2001;
Fidler et al., 2005). Combined, these two practices leave
considerable scope for this misconception to play out.

In all disciplines, misinterpreting a statistically nonsig-
nificant result as evidence of “no effect” (without account-
ing for statistical power) is a mistake, but in some disci-
plines the consequences may be catastrophic. For example,
in ecology false-negative results may lead directly to a lack
of necessary conservation or precautionary action in en-
dangered populations that have little scope to recover from
the error. Similarly, in medicine, such errors can mean
missing potentially life-saving treatments. As Altman and
Bland (1995) reminded us “Absence of evidence is not ev-
idence of absence.” (p. 311). In psychology, too, there can
be drastic consequences, including delays in application of
potentially useful interventions.

It might seem as if simply reporting statistical power
should rectify this misinterpretation. However, one conclu-
sion we can draw from the experimental results below is

Figure 1. Three hypothetical outcomes (panels 1, 2, 3) of two treatments (A, B). The Y axis in each panel shows percentage
improvement after treatment. The error bars are 95% confidence intervals. Panel 1 shows a scenario in which treatments
A and B are exactly the same; so if A is less expensive it would obviously be preferred. Panels 2 and 3 show a scenario
in which A and B are different to some statistically nonsignificant extent. The precision in panel 3 is much greater than
in panel 2, as can be seen from the relative confidence interval width. We can therefore be more certain in proceeding
with the cheaper treatment A in a panel 3 world than we can in a panel 2 world; in panel 2, study precision (roughly
equivalent to statistical power) is low, and uncertainty about the true mean difference is high.
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that reporting power is not sufficient to resist the lure of the
“significant-nonsignificant” dichotomy. The studies below
provide empirical evidence that presenting (at least these
simple results) as visual CIs leaves students much less
prone to this misconception, even when compared to “best
practice” NHST presentations (i.e., those that include com-
plete information including statistical power).

The two experiments that follow were conducted with
undergraduate students in environmental science and ecol-
ogy. Criticisms of NHST and calls for changes to practice
in ecology have existed independently but in parallel with
those in psychology. Misconceptions of p-values typical in
the psychology literature have also been identified in ecol-
ogy journals (e.g., Fidler, Burgman, Cumming, Buttrose, &
Thomason, 2006). In this sense, the disciplines are compa-
rable. Furthermore, the ecology students in our experi-
ments receive virtually identical training in probability and
statistics as psychology students at the same university. In
fact, several may have taken the exact same service courses
offered by the statistics department. The admission proce-
dure and requirements of entry into an ecology major are
also very similar to those for a psychology major. Finally,
the scenarios and questions we ask in these surveys are
parallel to many typical scenarios in psychology, and could
easily be translated into psychology problems. For exam-
ple, the uncertainty around the air quality measurement in
the Experiment 2 could easily be uncertainty around an IQ
estimate (or some other test score) in a situation where a
decision about classification or diagnosis needs to be made.
We, therefore, argue that the effects here can reasonably be
generalized beyond the domain investigated in the experi-
ments.

Experiment 1: Visually Presented CIs Result
in Fewer Misconceptions than NHST

Experiment 1 investigated whether CIs reduce the tempta-
tion to interpret statistical nonsignificance as “no effect” in
experimental scenarios with low statistical power. We fo-
cus on low power scenarios because, as indicated earlier,
they are typical in many disciplines. The context of our
study – environmental science and ecology – is no excep-
tion. For example, in studying threatened or endangered
populations, sample sizes are constrained by small popula-
tion sizes. In almost all cases, there are ethical or legal re-
strictions on areas being investigated and/or to simulating
predicted environmental change experimentally. Adding to
this problem is that statistical power is rarely reported in
these research fields. In our recent survey of conservation
biology journals (Fidler et al., 2006) only 8% of articles
reported a statistical power calculation, yet almost half of

the articles surveyed interpreted statistical nonsignificance
as evidence for no effect. Because CIs make information
about precision salient, particularly when they are present-
ed graphically, we expected fewer misinterpretations of
this kind in scenarios where this format was used.

Method

Participants, Materials, and General Design

Participants were 79 final-year Bachelor or Masters students
from three separate environmental science classes – “Envi-
ronmental Risk Assessment,” “Environmental Problem
Solving” and “Environmental Risk Assessment (Intensive)”
– at the University of Melbourne, in Australia3. All partici-
pants had at least one prior semester of statistics, and were
more than half-way through a second quantitative course.

Students viewed scenarios that required them to make
conclusions based on certain statistical outcomes. All
were randomly assigned to two of four possible scenarios
(see below) with fictional data and asked to answer some
multiple-choice questions. Students saw one scenario
with NHST results, and a second scenario with CI results.
Every effort was made to match scenarios for perceived
environmental importance, interest, and accessibility.
Scenarios were developed in consultation with two PhD
ecologists to improve plausibility and symmetry. Even
so, we used four scenarios in total, rather than two, to
assess scenario effects.

The key characteristic of the scenarios is that they en-
tailed statistically nonsignificant results, along with low
statistical power (0.38–0.60). In addition, they entailed
ecologically nontrivial observed effect sizes (the equiva-
lent to “clinically important effect sizes”), by which we
mean observed effect sizes that closely approached a bi-
ologically dangerous or important threshold or slightly
exceeded the threshold. All scenarios were simple re-
search designs, entailing either a single sample or two
independent groups. The content varied from soil and
water contaminants with potential human health effects,
to the population decline of popular and endangered flora
and fauna (see below).

In one version of each scenario, the results were present-
ed as a t test. In these cases the t statistic was accompanied
by a corresponding mean difference, standard deviation,
degrees of freedom, p value, and a priori statistical power
calculation for a predetermined biologically important ef-
fect. In the other version of each scenario, the results were
presented graphically with CIs. In each individual survey,
the scenario introductions were followed by either an
NHST version of the results or a CI version.
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Scenarios. Briefly, the scenarios themselves were these:
– Scenario 1. “Toe-clipping is commonly used to mark

frogs in population ecology studies because other meth-
ods of marking don’t work on their skin. It is a valuable
technique but there is some controversy over whether it
affects recapture rates and, therefore, frog survival. This
study examined the decline in recapture rate of frogs that
had toes clipped . . .”

– Scenario 2. “Cadmium is a toxic heavy metal used,
amongst other things, to make batteries. The cadmium
level in stream near a battery factory has just been mon-
itored . . .”

– Scenario 3. “A new park land is being developed near
an old gas works. A lot of soil has already been cleaned
and replaced. Since the clean up, the concentration of
petroleum has been surveyed . . .”

– Scenario 4. “The monkey puzzle tree is a vulnerable spe-
cies, endemic to South America. A study recently inves-
tigated whether two populations of monkey puzzle trees
could be mixed for reforestation. If there are sufficient
genetic differences between the two populations they
should be kept separate; if not, they can be mixed. One
important and common measure of genetic difference is
the ‘root to shoot’ ratio, which measures how drought
tolerant the trees are . . .”

In each scenario, subjects were given an explicit definition
of the null hypothesis, which, for the four scenarios were:
– Scenario 1. Zero decline in frog recapture rate.
– Scenario 2. Normal background level of cadmium =

1ppb.
– Scenario 3. Average nonharmful level of petroleum =

2000 mg/kg.
– Scenario 4. Root-to-shoot ratio = 1.

In addition, subjects were provided with information about
the size of a biologically important effect. In keeping with
typical practice, the biologically important effects did not
correspond to the null hypotheses above. The null hypoth-
eses above are equivalent to nil nulls, which, as noted ear-
lier, are hypotheses of no effect. In contrast, the biological-
ly important effects given were:
– Scenario 1. Frog recapture rate decline of 10%.
– Scenario 2. Environmental Protection Agency maxi-

mum acceptable level = 5ppb cadmium.
– Scenario 3. 5000 mk/kg of petroleum is dangerous to hu-

man health.
– Scenario 4. Root-to-shoot ratio = 5 is of substantive ge-

netic importance.

Figure 2 shows examples of one scenario (toe-clipping of
frogs) in both formats. Subjects were asked to answer by
circling one of the five statements below.

“In response to this information, the researcher who con-
ducted this study should conclude that:”
– There is strong evidence in support of an important ef-

fect.

– There is moderate evidence in support of an important
effect.

– The evidence is equivocal.
– There is moderate evidence of no effect.
– There is strong evidence of no effect.

The exact wording of these statements changed with each
scenario depending on what the particular “effect” was. For
example, in Scenario 1 the final option read: “There is strong
evidence that toe clipping does not cause unacceptable de-
cline.” In Scenario 2, it read: “There is strong evidence that
the factory has not breached EPA [Environmental Protection
Agency] standards.” (Underlining in original.)

Responses indicating moderate or strong evidence for
the null hypothesis were considered misconceptions, be-
cause, as mentioned, in all scenarios: (a) the statistical pow-
er of the scenario was low (power between 0.38 and 0.60)
and (b) observed effect sizes were nontrivial in comparison
to biologically important effects. Therefore, accepting or
“failing to reject” the null was an uncontroversial error, and
entailed interpreting statistical nonsignificance as “no ef-
fect.” More appropriate responses noted the lack of power
or precision and deemed the evidence equivocal, or attend-
ed to the large effect sizes and suggested that the evidence
favored the alternative hypothesis.

Results and Discussion

Sixty-one percent (48 of 79, 95% CI: 50 to 71%) of students
did not demonstrate the misconception that statistical non-
significance means “no effect” when given results present-
ed in the NHST format. This in itself is notable. Previous
research has found this misconception to be far more wide-
spread (Haller & Krauss, 2002; Oakes, 1986). However, it
is important to note that these students had, throughout the
semester, received several warnings of the misconception,
along with formal instruction regarding statistical power
analysis. Also, statistical power was clearly stated in all
scenarios, and the biologically important effect size was
stated. This reporting of what might be considered “best
practice” NHST   is far from typical, as discussed in the
introduction to this experiment. Given that the presentation
of results in these scenarios was much more complete than
a typical journal article, it should, perhaps, be alarming that
still 39% (31 of 79; 95% CI: 29 to 50%) did demonstrate
the misconception.

Of those 31 students who demonstrated the misconcep-
tion in the NHST scenarios, an overwhelming majority
(87%; 95% CI: 71%, 95%) answered correctly when they
were instead shown CI scenarios (presentation order was
counterbalanced). Almost a third (32% of 31; 95% CI:
19%, 50%) moved 1 point on the 5-point Likert scale away
from statements of accepting the null when given a CI; 52%
(95% CI: 35%, 68%) moved 2 points and 3% (95% CI: 0
to 16%) moved fully 3 points. This amounts to an average
shift of 1.67 points on a 5-point scale (see Figure 3).
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Figure 3. Frequency of five response
types (left to right: strong support for
effect, moderate support for effect,
equivocal, moderate support for null,
strong support for null) for the four
scenarios when results were presented
in NHST format (shaded bars) and CI
format (white bars). Number of re-
spondents in each scenario: cadmium
n = 20 (21 in CI format); frogs n = 20;
monkey puzzle tree n = 19; petroleum
n = 20 (21 in CI format).

Figure 2. The toe-clipping scenario in
two formats – confidence-interval pic-
ture and NHST. In both the effect is
biologically important, and the statis-
tical power (or precision) low.
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So far, this is an undeniably impressive result in favor
of using CIs rather than NHST as a means of conveying the
meaning of a data set. However, what of students who did
not demonstrate the misconception to start with? Recall
that 61% of students did not demonstrate the misconception
in the NHST scenario. Were they perhaps led astray by the
CI format? Table 1 presents these results. Any “reverse”
effect is obviously undesirable, although in this case it
seems isolated to one particular scenario – the monkey puz-
zle tree – where we suspect the direction of a “positive”
result may have been ambiguous.

Conclusion

The results show promise for visually presented CIs. Giv-
en, in particular, (a) variability across scenarios and (b) that
NHST used was best practice (e.g., a priori power, biolog-
ically important effect-size clearly stated) these results
should be interpreted as encouraging. This misconception
that statistical nonsignificance means no effect is not en-
tirely absent when results are presented in CI picture format
(as we might first have optimistically expected), but it is
considerably less frequent.

Experiment 2: A Fully Within-Groups
Replication

In Experiment 2, Experiment 1 was partially replicated as a
fully within-subjects design, with a new sample of 55 second-
year ecology subjects at the University of Melbourne. These
participants were, on average, a year behind the previous
sample and so arguable less statistically sophisticated than the
previous sample. All had at least been exposed to both CIs
and NHST during the previous semester.

Method

Each student was given a single research scenario and pre-
sented with both CI and NHST presentations of the results.
The presentation order of these formats was counterbal-

anced, such that roughly half of students saw the NHST
format followed by the CI format and the remainder saw
the CI format followed the NHST format. This replication
was designed to eliminate any confounding effects of sce-
nario content, including varying effect sizes, levels of sta-
tistical power, and subjects of study. The scenario was in-
troduced as follows:

There are concerns about the air quality in a freeway tunnel. This
study monitored the concentration of carbon monoxide (CO) during
peak-hour traffic over 2 weeks, taking a total of 35 samples. Normal
background levels of carbon monoxide are between 10–200 parts per
million (ppm). A 1 h exposure time to CO levels of 250 ppm can lead
to 5% carboxylated hemoglobin in the blood. Any level above this is
abnormal and unsafe. If the true level of CO concentration in the tun-
nel exceeds 250 ppm, the tunnel will be closed and a surface road
built. However, the surface road proposal has problems of its own,
including the fact that threatened species inhabit an area near the sur-
face site. First consider Presentation A. Please answer the question
following Presentation A and then move on to Presentation B.

As in Experiment 1, the scenario was statistically nonsig-
nificant with low statistical power and an effect size close
to the biologically important cut off (i.e., observed effect
230 ppb). In addition, this scenario also included an incen-
tive against overly precautionary answers that subjects
might be naturally biased toward – the economic and bio-
logical costs of the tunnel alternative.

Question 1 was exactly the same as for Experiment 1,
i.e., it asked whether the results provided strong or moder-
ate evidence for an unsafe circumstance (the alternative hy-
pothesis), strong or moderate evidence for a safe circum-
stance (the null) or whether the evidence was equivocal.
As in Experiment 1, responses suggesting that results pro-
vided moderate or strong evidence for the null hypothesis
were considered misconceptions, for the same reason: Sta-
tistical power was low and the effect size was nontrivial in
comparison to biologically important effects, and so ac-
cepting the null was an uncontroversial error.

Results and Discussion

Given the NHST format, 44% (24 of 55; 95% CI: 31%,
57%) of students inappropriately claimed the results as ev-

Table 1. Percentage of students who agreed that results moderately or strongly supported the null hypothesis (i.e., dem-
onstrating the misconception that statistical nonsignificance equals “no effect”) for each scenario and format

Results as NHST
% (n)

Results as CI picture
% (n)

Improvementa with CI picture
(NHST-CI)

95%CIb for improvement

Cadmium 30.0 (20) 4.8 (1 of 21) 25.2 3% – 50%

Frog 45.0 (20) 0.0 (0 of 21) 45.0 23% – 67%

Monkey puzzle 31.6 (19) 36.8 (7 of 19) –5.2 –35% – 25%

Petroleum 50.0 (20) 23.8 (5 of 21) 26.2 –2% – 55%

Average 39.1 16.4 22.8
aNegative values reflect more misconceptions in confidence-interval format of the scenario than in the NHST format. bConfidence intervals
calculated according to method recommended for proportions by Newcombe and Altman (2000).
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idence for the null hypothesis. Less than half as many
(18%, 10 of 55; 95% CI: 10%, 30%) made this mistake in
the CI condition.

In Experiment 1 there appeared to be a reversal effect,
i.e., some (17%) students demonstrated the misconception
only with CIs and not at all with NHST. In this replication,
which eliminated the confounding effect of certain scenar-
ios, this reversal effect was much less pronounced (6%, 2
of 31 who did not have misconception in the NHST for-
mat).

The average shift away from misconceptions in the CI
conditions was 1 point on the 5-point scale – a substantial
effect, but perhaps not quite as large as we might have an-
ticipated. However, the effect may be diluted by a learning
effect. Indeed, students who saw the CI first appeared to do
better with the NHST format than students who did not.
(Numbers here are too small to analyse in any formal way.)

Conclusion

This within-groups replication provided even stronger ev-
idence that CIs have a cognitive advantage over NHST.
Visually represented confidence-intervals substantially al-
leviated the misinterpretation of statistically nonsignificant
results as evidence for the null hypothesis, over and above
a best practice NHST report including statistical power.

General Conclusions

The process of NHST has an enormous amount of inertia:
In the social sciences, and other sciences as well, it has been
the overwhelming data-analysis procedure for almost as
long as these sciences have lain claim to be sciences. How-
ever, it is seriously flawed for, at the very least, the reasons
that we articulated earlier. At its heart, it fails to underscore
the magnitude and nature of uncertainty associated with
any scientific result – uncertainty that is critical for under-
standing the data set, and, hence, uncertainty that the re-
searcher should place front and center.

CIs have many theoretical advantages over NHST: They
always include an estimate of the magnitude of the effect
and information about precision, and they lend themselves
readily (in most cases) to graphical representation. They do
not necessarily entail a dichotomous decision on the basis
of single studies, and should, therefore, help build a more
cumulative approach to scientific knowledge. However,
whether in practice CIs afford these benefits remains an
open question. We have, for some time, had evidence of the
widespread misconceptions about p-values, and yet there
has been relatively little empirical study of the most com-
monly proposed alternatives. Here we have presented two
studies that help to build an evidence base for the shift away
from statistical significance and toward a science of esti-
mation.
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