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Introduction

Last time, we noted that a key point in panel data models is the extent to which units may
be seen as having the same coefficients. The most basic way of thinking of unit effects is in
terms of an intercept, i.e., that some units/clusters have higher or lower levels of the outcome
variable Yit than others.

Consider a general model in which we have these individual (unit)-level effects:

Yit = αi + βXit + uit (1)

Here, we represent unit-level effects as separate intercept terms – i.e., some clusters tend to
have higher values of Y than others. This is thus known as a variable-intercepts model
(a la Hsiao 2002, Ch. 1) or a one-way error components model (Baltagi 2005, Ch. 2).

Variable-intercept models can be motivated in a bunch of different ways. One is as a model
of individual-level heterogeneity (or, put differently, as a means of addressing the issue of
omitted variable bias). Suppose for example that we have a model that considers the effects
of unit varying, time-constant covariates (V ), unit-constant, time-varying covariates (W )
and covariates which vary across both units and time (X):

Yit = α + βXit + γVi + δWt + uit (2)

If we don’t have measurements of the factors in V and W , we can consider instead their
combined product; this leads naturally to a model where we have unit- and time-specific
intercepts:

Yit = α + βXit + γi + δt + uit (3)

This model has both time- and unit-specific effects, and is known as a two-way error com-
ponents model (e.g., Baltagi 2005, Ch. 3). Such models are a more general case of that in
(1), and are used relatively little in the social sciences.

As a practical matter, there are a few different ways we can estimate the model in (1). The
first we’ll talk about is the fixed-effects approach.

The Fixed Effects Model

Treating the unit effects αi in (1) as fixed values is, in many respects, the simplest thing
we can do. That is, we simply estimate (1) by including N − 1 separate indicator variables,
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one for each unit, in the model along with the Xs. This is mathematically the same thing
as analysis of covariance (and is the same as ANOVA if we drop the Xs); if we include
both unit- and time-specific dummies, its equivalent to two-way ANCOVA. Stimson calls
this approach the least-squares dummy variables (LSDV) method.

In panel data, when N is large relative to T , we have lots of effects to estimate; this means
that our individual α̂s aren’t going to be estimated very precisely. But, we shouldn’t really
care about that, since they’re only “nuisance parameters” anyway. We might call this the
“brute force dummy variables” (BFDV) method.

In practice, however, if we have lots of units, we can run into trouble calculating all those
α̂s. Moreover, Neyman and Scott (1948) show that, for ML models, one’s estimates can be
inconsistent if the model contains parameters that grow with the number of observations.
(The intuition is that, if the number of αs are growing in N , we are never able to “catch up”
and get consistent estimates). In addition, estimating a fixed effects model requires inverting
a large coefficient matrix (of size N +k, possibly up to several thousand square – remember,
β̂ = (X′X)−1X′Y). Thankfully, there’s another alternative.

Estimating Fixed-Effects Models

There’s a useful way to think about the alternative to the BFDV approach. Recall the
discussion of unit-varying versus time-varying variables from last time. We can rewrite the
model in (1) as:

Yit = αi + βBX̄i + βW (Xit − X̄i) + uit (4)

Now, to the extent that there is variation in the X’s across units, it will be captured in the
first term, while within–unit variation is in the second term. Moreover, the model in (4)
reduces to the model in (1) when (that is, iff) βB = βW (we’ll talk more about this in a bit...).

The problem with (4) is that it is unidentified; the αis and the X̄is are the same thing (i.e.,
constants within units that vary only across units). In fact, as we’ll see in a minute, they’re
exactly the same thing, which means that the β in the fixed-effects version of (1) is the same
as βW in (4).

Why is this important to estimation? Because it allows us to estimate these models in a
much easier fashion. Recall that one characteristic of OLS is that, in the model Y = Xβ+Zγ
we can get estimates of β̂ and γ̂ by first regressing Y on X, and then regressing the residuals
from that model in Z. Here, we could do the same thing:

1. Regress Yit on αi,

2. do the same thing for each of the Xs (that is, regress each Xit on αi),

3. take the residuals from those equations and regress them on each other.
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In fact, we don’t even have to do all that. If you think about what you’ll get when you
undertake steps (1) and (2), its clear that the “regression line” for each unit will simply
be the within-unit mean X̄i, and that the “residual” will be the difference between the
observation and this mean, Xit− X̄i. So, in fact, we can estimate the βs by simply creating:

Y ∗it = Yit − Ȳi
X∗it = Xit − X̄i

and then estimating

Y ∗it = βFEX
∗
it + uit (5)

This is what Stata’s areg (stands for absorbing regression) procedure does. It provides esti-
mates of the βFEs, but not the αs; the latter are said to be “absorbed” (or “swept out”, or
“conditioned out”) of the model. Since we’re usually not interested in the αs anyway, this
is no big deal.

A key thing to remember about (5) is that it makes use of only the within-unit variation in
the Y s and the Xs; compared to (4), it’s clear that (5) ignores cross-unit variation, since the
variables Y ∗it and X∗it are “de-meaned.” This will be important in just a bit...

Issues with Fixed-Effects Models

Fixed effects models are intuitively appealing, and are fairly widely used, especially in eco-
nomics. They do, however, have some particular issues that need to be considered in their
use.

Detecting Fixed Effects

Unsurprisingly, since one way of thinking about fixed effects is as unit-specific independent
variables, then an intuitive test for whether they are necessary or not is an F -test:

H0 : αi = αj∀i 6= j;H1 : αi 6= αj for some i 6= j (6)

where we calculate the F by comparing the sums of squares from the models with and with-
out fixed effects, and F has (N − 1, NT − (N − 1)) degrees of freedom (note that both areg

and xtreg, fe do this for you automatically). A significant F is indicative of a need for
fixed effects (or, at least, some kind of unit effects).

In practice, however, this test will almost always be significant, especially if NT is fairly
large. If so, you then have to decide whether or not to include them. Which leads to...
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Pros and Cons of Fixed Effects

There are good reasons both for and against using fixed effects models...

Reasons to Include Fixed Effects

• If you don’t, you have specification bias, and there’s nothing worse than that.

• Unit effects have an easy, intuitive explanation for non-methods types; this can be very
useful.

• They’re generally widely used, lots of people have heard of them; they’re established
and (almost always) non-controversial.

Reasons NOT to Include Fixed Effects

• They can kill your covariates. Fixed effects models can’t include covariates that are
constant within units (because they are perfectly collinear with the fixed effects). (Re-
call that, if you calculate the X∗ variables above for unit-constant covariates, you get a
uniform zero). Since we often care about the effects of variables that don’t change over
time (e.g., demographics like race and age in panel studies, or things like contiguity in
IR), that can be a big problem (e.g., Green et al. 2001 IO).

• Relatedly, if you have variables that change slowly / only a little, their effects will be
hard to estimate precisely. This is because they will be highly collinear with the fixed
effects (that is, their X∗ values will not vary much, and so will all be close to zero).
But, see Plumper and Troeger (2007)...

• Inefficiency. Fixed effects models use up a lot of degrees of freedom (usually something
like 1

T
, which, in short panels, is a lot). This means that one’s standard error estimates

can be pretty badly affected.

The moral of the story: I’m not going to tell you not to use fixed effects, but be careful...

An Example: Refugee Flows in Africa, 1992-2001

Consider a model of the refugee flows between two countries A→ B. A simple “gravity-type”
model is:

ln(Refugees)A→Bt = β0 + β1Population DifferenceABt + β2DistanceAB +

β3POLITY DifferenceABt + β4War DifferenceABt + uABt (7)

Here, we have four variables: Population, POLITY Difference, and War Difference all vary
both across dyads and across time, while Distance varies only across dyads, but not over
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Variable OLS Fixed Effects
Constant -0.32 -0.60

(0.01) (0.004)
Population Difference -0.17 6.86

(0.22) (2.55)
Distance -0.13 (dropped)

(0.005)
POLITY Difference -0.0002 0.005

(0.016) (0.022)
War Difference 0.074 0.010

(0.007) (0.007)

ρ̂ - 0.61

Note: NT = 23618 (N = 2450, T̄ = 9.6)

time (why?). Our data are for all “directed dyads” (that is, we include both Zaire→ Angola
and Angola → Zaire) in Africa (so N = 2450) for ten years (1992-2001). We compare OLS
and FE models below.

Note several things about the two models:

• The Distance variable gets dropped in the fixed-effects model; this is because it doesn’t
vary “within” a given dyad.

• The effect of the Population Difference variable increases substantially in the fixed–
effects model, and also changes sign (to be in the “right” direction). This suggests that
within-dyad changes in population have large effects on refugee flows.

• The effect of the POLITY Difference variable grows a bit, but never attains statistical
significance.

• The influence of the War Difference variable shrinks considerably in the fixed effects
model; we’ll talk about this more below.

• The value for the F -test is 12.1 (with 2449 and 21165 df) (p < .001). This indi-
cates that the fixed-effects specification is “better” than the one without fixed effects.
Whether one would want to use fixed effects in this case, however, would depend on
how important the Distance variable was to you (more on this below...).
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The One You Never Hear About: Between Effects

An important aspect of fixed effects models is that they only use information “‘within”
observations (that is, over time, or whatever else defines repeated observations on the same
units). Go back to equation (4):

Yit = αi + βBX̄i + βW (Xit − X̄i) + uit

We said before that this model is unidentified, because the αis and the X̄is are perfectly
collinear, because each only varies across (that is, between) units i. Because of this collinear-
ity between the unit effects and any variables that vary only across units, fixed effects models
are unable to estimate the influence of such covariates (such as the Distance variable in the
example above).

Thus, as we noted above, an alternative way of estimating a fixed effects model is simply to
“de-mean” each of the independent variables and use OLS:

Yit − Ȳi = α + βW (Xit − X̄i) + uit

Estimating this model will give you precisely the same estimates of β̂ as the fixed–effects
estimator. For this reason, the fixed effects model is often (and, in my opinion, more accu-
rately) referred to as the “‘within” or “within effects” estimator.

Logically, then, we could also consider an estimator that only considered information between
units i:

Ȳi = α + βBX̄i + uit (8)

This is often known as the “between” estimator, because it uses only information between
units i. One can estimate this model by calculating the within-unit mean of each X variable,
and then regressing Ȳi on those “means” using OLS; one can also use Stata’s xtreg ...,

be. If we do this for the refugee data we’ve been taking as our example, we get the following:
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Variable OLS Fixed/“Within” Effects Between Effects
Constant -0.32 -0.60 -0.30

(0.01) (0.004) (0.03)
Population Difference -0.17 6.86 -0.25

(0.22) (2.55) (0.53)
Distance -0.13 (dropped) -0.13

(0.005) (0.01)
POLITY Difference -0.0002 0.005 0.01

(0.016) (0.022) (0.05)
War Difference 0.074 0.010 0.12

(0.007) (0.007) (0.02)
ρ̂ - 0.61 -

Note: NT = 23618 (N = 2450, T̄ = 9.6).

Note a few things:

• The between effects are, in general, closer to the OLS (pooled) estimates than are the
fixed/within effects estimates; this is particularly true for the Population Difference
variable (why?).

• The interpretation of these two models is very different.

◦ The fixed/within effects model estimates the impact of a one–unit change in X
on Y within a particular unit i ; that is, the impact on Y of a particular unit’s
moving from X to X + 1.

◦ The between effects model estimates the impact of a difference of one in X across
two different units on the expectation of Y ; that is, how much would we expect
Y to be different between two different units, one of which had X = k and the
other had X = k + 1.

• This difference in interpretation has some substantive importance. Consider the War
Difference variable...

◦ Within a particular dyad, an increase in the War Difference variable (that is,
country A experiencing greater conflict and/or country B experiencing less war)
has a relatively small, marginally significant impact on refugee flows from A to
B.

◦ By looking at the between effects model, we can see that our expectation about
the difference in refugee flows between two different (comparable) dyads, one with
War Difference = k and the other with War Difference = k + 1 is roughly ten
times as great.
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• Finally, given all this, the OLS results can be seen as something of an “average” of the
two other models.

But the real value of the between effects model lies in it relationship to a third model that
gets talked about a lot...

Random Effects Models

There’s another way to think about individual-level heterogeneity in a panel context: as
different components of the error term uit. Suppose we start with a basic model:

Yit = Xitβ + uit (9)

and we think of the error term as having a number of different components, which vary either
over time, across units, or both:

uit = αi + λt + ηit (10)

where the following conditions all hold:

E(αi) = E(λt) = E(ηit) = 0,

E(αiλt) = E(αiηit) = E(λtηit) = 0,

E(αiαj) = σ2
α if i = j, 0 otherwise,

E(λtλs) = σ2
λ if t = s, 0 otherwise,

E(ηitηjs) = σ2
η if i = j, t = s, 0 otherwise,

E(αiXit) = E(λtXit) = E(ηitXit) = 0.

If all these conditions hold, then the variance of Yit conditional on Xit is simply σ2
α+σ2

λ+σ2
η.

These are often referred to as variance components ; each is a party of the total variance of uit.

Note that, if we assume for the moment that λt = 0 (we’ll come back to this assumption),
we get a model that looks like:

Yit = Xitβ + αi + ηit (11)

which looks an awful lot like the fixed effects model we talked about above. In fact, it is
the same model, albeit with different assumptions about the αs, and about the relationship
between the αs and the Xits. (More on this in a minute...). In fact, there are a couple
different ways we can motivate random-effects models.
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Random-effects as Draws from a Distribution

The canonical way of thinking about random effects is to say that, rather than treating
the αis as fixed (and estimating them), we treat each as a random draw from some single
distribution. We can then estimate the parameters of that distribution, which (relative to
fixed effects) reduces the number of estimable parameters a whole lot. Typically, we assume
that the distribution is Normal, i.e., that αi ∼ i.i.d. N(0, σ2

α). We then want to estimate σ̂2
α,

along with σ̂2
η. Intuitively, think about what this means:

• From what we said above, we know that the total error variance is just σ2
u = σ2

α + σ2
η.

• This means that we need to be able to separate out the unit-specific error component
from the unit-and-observation-specific part, or

• at a minimum, figure out the relative contribution of the two components to the overall
variability of the errors.

Put differently, we now have a model in which any given error uit is, by necessity, correlated
with every other error from the same unit uis, by virtue of the fact that they share a common
component αi. How should/can we estimate this model?

One alternative is OLS. Since the “problems” with the model are all in the error terms, OLS
will produce unbiased, consistent estimates for the β̂s. The problem is that the standard
errors will be too small (because we’re acting as if we have information on NT separate
observations, rather than on T observations on N units). This is a problem not unlike au-
tocorrelation, in some respects.

Thus, if we are to estimate the model in (11), we need to account for the fact that the
within-unit errors are correlated. The logical way to do this is through GLS, in the same
way that we use GLS to deal with, e.g., heteroscedasticity. To do this, we need to consider
the nature of the correlation within units. Let’s think for a minute about what the variance
of the errors are within a particular unit in this setup:

E(uiu
′
i) ≡ Σi = σ2

ηIT + σ2
αii
′

=


σ2
η + σ2

α σ2
α · · · σ2

α

σ2
α σ2

η + σ2
α · · · σ2

α
...

...
. . .

...
σ2
α σ2

α · · · σ2
η + σ2

α

 (12)

where i is a T × 1 vector of ones. Assuming (as we do) that the errors across observations
are uncorrelated, we can then “stack” these unit-level covariance matrices to get the overall
variance-covariance matrix for u:
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Var(u) ≡ Ω =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣN

 (13)

Now, we can use an estimate of the inverse of the “square root” of this Ω̂ matrix as weights.
Its possible (but a pain) to show that:

Σ−1/2 =
1

ση

[
IT −

(
θ

T
ii′
)]

(14)

where

θ = 1−

√
σ2
η

Tσ2
α + σ2

η

(15)

is an unknown quantity to be estimated.

This all seems really hard, but a close look at (15) will reveal a few useful things:

• If σ2
α = 0, then

◦ θ = 0 as well,

◦ there are no unit-level effects, and

◦ the model reduces to a plain-vanilla pooled OLS model.

• If σ2
η = 0, then

◦ θ = 1,

◦ all of the variation in the variables is “within” units, and

◦ OLS will yield an R2 = 1 regression.

• The term θ thus gives a measure of the relative sizes of the within- and between-unit
variances.

• As T gets bigger, this term goes to zero; moreover, (14) converges to the standard OLS
model. (As a practical matter, this means that there will be few differences between
fixed- and random-effects model estimates when T is large; more on this in a bit...).

Once we have a consistent estimate of θ, we can use it (à la feasible GLS) to transform the
observations in the data:
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Y ∗it = Yit − θȲi
X∗it = Xit − θX̄i

This gives the following feasible generalized least squares (FGLS) equation for the random-
effects model (11):

Y ∗it = (1− θ)α +X∗itβRE + [(1− θ)αi + (ηit − θη̄i)] (16)

Note that the random-effects model in (16) can be seen to be a (matrix) weighted average
of two other models: the “within” (i.e., fixed-effects) model (the one where we simply treat
θ as equal to 1.0) and a “between” model, in which we consider only the variation between
units (i.e., where we regress the means of Y on those of X). GLS is thus a “compromise”
between fixed effects (which ignores the between-unit variation) and OLS.

This GLS approach to estimating (11) is the standard. One can also estimate the model via
MLE, but (a) few do so, and (b) the documentation (at least, for doing so in Stata) isn’t so
good...

An Alternative View: Random Effects as a Restriction on Cov(Xit, αi)

A different way of thinking about random versus fixed effects is solely in terms of the re-
strictions they put on Cov(Xit, αi). Johnston and DiNardo (1997) point out, quite rightly,
that the important distinction between “fixed” and “random” effects models isn’t whether
the effects are fixed or random; instead its whether the individual-level disturbance αi is
correlated with the covariates Xit or not. In the “random-effects” model, we assume that
the unit effects are uncorrelated with the explanatory variables. Conversely, we need make
no such assumption in the “fixed-effects” model.

This intuition makes it possible to do some specification tests, which we’ll get to in a little bit.

Another Alternative View: Random Effects as Weighted Combinations of FE and BE
Estimators

Equation (16) emphasizes a point that I mentioned earlier: the random effects estimator
is a matrix-weighted average of the between and within (fixed) effects estimators, with the
weight being determined by (among other things) the relative amount of within-unit and
between-unit variability in the data. In the limit,

• If all the variation in the model is across-unit – e.g., if all the Xs in the data are non-
time varying – then the BE and RE estimators will give the same results, asymptotically
(and the FE model will be inestimable).
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• Likewise, if all the variation is within-unit – e.g., if we are using “de-meaned” data
– then FE and RE will give the same results asymptotically (and the BE model will
blow up).

Graphically, we can think of the relationship among the models thusly:

Figure 1: Fixed, Between, and Random Effects Estimators

 

Fixed/Within 

Effects 

Between 

Effects 
! " 1            Random Effects            ! " 0 

Thus, we can think of the RE estimator as something of a compromise... However, that com-
promise comes at something of a price, in that it requires that we assume that Cov(Xit, αi) =
0. More on that below.

Random Effects Models: Practical Stuff

Stata will, of course, estimate random effects models; it also provides easy ways to assess the
relative “fit” of fixed versus random effects.

Estimation in Stata

The Stata command for fixed-effects models is simply -xtreg-; you can add the re op-
tion if you want, but the default is random effects. To obtain the MLE estimates (rather
than the FGLS ones, which are the default), add the mle option to the end of the com-
mand (though I don’t know why one would care to do this... details can be found at
http://www.stata.com/support/faqs/stat/mle_vs_gmm.html).

Stata reports the standard coefficients and standard error estimates. In addition, it also
reports estimates of σ̂α and σ̂η, as well as an estimate ρ̂ = σ̂α

σ̂η+σ̂α
, which is simply the pro-

portion of the total variance in uit due to the αis.

In addition, Stata provides you with estimates of three different “goodness of fit” measures:
the “within”, “between” and “overall” R2s.

• The “overall” R2 is simply the standard R2 from the regression of Y on X.

• The “between” R2 is the R2 from the regression of the means of Y on the means of X
(i.e., the R2 of the “between” estimator).

• The “within” R2 is similar, and amounts to the same thing as the R2 from the “pre-

diction equation” (Ŷit − ˆ̄Yi) = (Xit − X̄i)β̂.

12



The Refugee Example, Redux

Let’s reconsider the refugee example from earlier. Specifically, let’s compare the results of
OLS, fixed, between, and random effects models...

Variable OLS Fixed Effects Between Effects Random Effects
Constant -0.32 -0.60 -0.30 -0.31

(0.01) (0.004) (0.03) (0.03)
Population Difference -0.17 6.86 -0.25 0.09

(0.22) (2.55) (0.53) (0.52)
Distance -0.13 (dropped) -0.13 -0.13

(0.005) (0.01) (0.01)
POLITY Difference -0.0002 0.005 0.01 0.0008

(0.016) (0.022) (0.05) (0.0199)
War Difference 0.074 0.010 0.12 0.022

(0.007) (0.007) (0.02) (0.007)
ρ̂ - 0.61 - 0.56

Note: NT = 23618 (N = 2450, T̄ = 9.6).

Things to note:

• The effects of Distance are the same across all three models; this is because this variable
only varies between / across units, so that the estimates are all bound to be the same.

• The Population Difference variable has very different effects across the three models;
here it’s clear that the RE results are averages of the others. The same is true of the
War Difference variable.

• The random-effects model can estimate the influence of time-constant variables (which
is a real advantage).

The biggest potential problem with random effects is the requirement that E(αi, Xit) = 0.
Think about this: There are a bunch of unmeasured factors that all go into αi and determine
whether, on average, observation i will have a higher or lower value of Yit. There are also
some Xs that influence the same thing, which are in the model. What are the odds that
those two sets of things will be uncorrelated? In some circumstances – e.g., field experiments,
where we can randomize over important treatments (but still want to allow for unit-level
heterogeneity), the answer might be “very likely.” But, in most cases where we’re using
observational data, the odds are slim.
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Choosing...

So, how does one choose between fixed- and random-effects models?

Statistical Criteria

There are a couple easy-to-use tests for assessing whether random effects, in particular, are
a good idea.

The Breusch/Pagan LM Test

Breusch and Pagan (1980) developed a Lagrangian multiplier test for random effects. The
basic idea is that, in the model

Yit = Xitβ + αi + uit (17)

if Var(αi) = 0, then random effects aren’t needed. The B-P test is a Lagrangian multiplier
test of this hypothesis. (An alternative way of thinking about it is that there is no within-
unit correlation; this is also thus a test for that). The command for this test in Stata is
-xttest0-; an example is presented below. In many respects, this is like an F-test; it’s
exceedingly unlikely that you’ll not reject the null, especially if your NT is large.

The Hausman Test

Recall that one can think of fixed- and random-effects as simply the same model, with differ-
ent assumptions about Cov(αi, Xit), and that the random effects estimator is nothing more
than a weighted combination of β̂B and β̂W . Moreover, the fixed and random effects estima-

tors will differ only insofar as
σ2

η

Tσ2
α+σ2

η
is different from zero (thus, they will differ less and less

as T → ∞). Realistically, the former assumption is untestable; but Hausman (1978) gives
us a test for whether the coefficients between the two models are the same.

Here’s the logic:

• Under the null (i.e., that the data are generated by a random-effects DGP – or, equiv-
alently, that the Xs and the αs are uncorrelated), both fixed- and random-effects are
consistent, but the random-effects model is fully efficient. This is because it makes effi-
cient use of both the within- and across-unit information in the data, whereas the fixed
effects model only uses the within-unit information (and the between effects model only
uses the across-unit information).

• Under the alternative assumption (i.e., that Cov(αi, Xit) 6= 0), the fixed-effects esti-
mator is consistent, while the random-effects one isn’t (i.e., they don’t converge to the
same values of β̂).
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This means that, asymptotically, we can get a handle on whether the random-effects as-
sumption is valid or not by comparing β̂FE with β̂RE. Formally, we do this by calculating:

Ŵ = (β̂FE − β̂RE)′(V̂FE − V̂RE)−1(β̂FE − β̂RE) (18)

That is, we’re taking the difference between the two coefficient vectors, “weighted” by the
difference between the VCV estimates; the result is distributed χ2

k, where k is the number
of non-time-constant variables in the model (minus the constant). The Stata command for
this test is hausman.

Note several things about this test:

• Large values tend to reject the null that Cov(αi, Xit) = 0. However, there are plenty of
other ways one can reject the null as well. Since this is a general specification test for
errors correlated with the covariates, one can also reject the null if (e.g.) your model
is mis- or under-specified. This means that, while random effects are probably OK if
you fail to reject the null, they’re not necessarily not OK if you can do so.

• Note as well that the test can only address variables that are time-varying (because its
impossible to get estimates of β̂FE for those that don’t).

• Also, remember that the two estimators β̂FE and β̂RE converge as T →∞; so that the
Hausman test will (correctly) tend to fail to reject the null with large T .

The Refugee Example, Once Again

Remember these results?

Variable OLS Fixed Effects Between Effects Random Effects
Constant -0.32 -0.60 -0.30 -0.31

(0.01) (0.004) (0.03) (0.03)
Population Difference -0.17 6.86 -0.25 0.09

(0.22) (2.55) (0.53) (0.52)
Distance -0.13 (dropped) -0.13 -0.13

(0.005) (0.01) (0.01)
POLITY Difference -0.0002 0.005 0.01 0.0008

(0.016) (0.022) (0.05) (0.0199)
War Difference 0.074 0.010 0.12 0.022

(0.007) (0.007) (0.02) (0.007)
ρ̂ - 0.61 - 0.56

Note: NT = 23618 (N = 2450, T̄ = 9.6).

After estimating the random effects model, we can estimate these two tests. Typing the com-
mand .xttest0 after the model estimates yields a test statistic of 28658.99 (again, ∼ χ2

1),
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which gives a p-value that is off-the-chart significant. This ought not be so surprising, since
our estimate of ρ̂ was also very significant.

More interesting is the hausman results, which yield Ŵ = 30.9, ∼ χ2
3 for a p-value of < 0.001.

This suggests that we can reject the null that random effects are (in some fashion) appropriate
for the model we have here. Unless we care a lot about getting an estimate of the influence
of the Distance variable, we might be better off going with fixed effects.

Other Practical Matters

There are practical as well as statistical reasons for choosing fixed or random effects models.

Panel vs. TSCS data

Recall the difference between panel (large, increasing N ; small, fixed T ) and TSCS data
(smallish, fixed N ; larger, increasing T ).

• For TSCS data, when we really may actually care about the “names” of the units
(e.g., nation-level OECD data), fixed effect can be a good idea. This is particularly
true since we’re (a) unlikely to have an increasing N , and (b) we are often interested in
the influence / effects of variables conditional on there being some unit-specific effect.
These are also more likely to be the situations in which we don’t necessarily care about
the effects of unit-level (i.e., non-time-varying) covariates.

• For panel data, we (a) don’t care about the identities of the units (e.g., in surveys),
and (b) often think in terms of N increasing while T remains fixed (and small). Here,
random-effects are often a good idea, in part because it is here that we’re more likely to
care about unit-level covariate effects (e.g. demographic variables in survey research).

Covariate effects

One of the biggest reasons for using random effects rather than fixed is when we care, sub-
stantively, about the influence of variables that don’t change over time. There was a big
discussion in the IR literature a few years ago about fixed effects (we’ll talk about that
more later); one of the problems with fixed effects in that context is that they sweep out
the influence of things like contiguity, which everyone knows is important to things in IR
(conflict, trade, etc.).

In fact, fixed effects don’t prevent one for controlling for contiguity, and even do a better
job than a simple variable (since fixed-effects don’t assume that the effect of contiguity is
constant across all dyads the way a pooled analysis typically does). The problem, rather,
is that they prevent us from saying anything summarily about contiguity effects (e.g., that
“contiguous dyads are 552 percent more likely to engage in a dispute”, etc.). So, the issue
isn’t whether you can control for the effects, but whether or not you want estimates of them.
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Separating Between and Within Effects

It’s also reasonable to estimate a model that is both a BE and an FE model. That is, if we
omit the unit effects αi, we can estimate:

Yit = α + βBX̄i + βW (Xit − X̄i) + uit (19)

This model separates the between and within unit effects, and estimates them separately.
To do so, we simply generate a variable for X̄i, the unit-specific mean of X, and another for
Xit − X̄i, the within-unit deviation around that mean. Once we’ve done this and estimated
the model, it is straightforward to (e.g.) test the condition that β̂B = β̂W for any or all of
the independent variables in the model.

If we estimate this model for our refugee data, we get the following:

Variable Estimate
Constant -0.32

(0.01)
Distance -0.13

(0.004)
Between (Mean) Population Difference -0.22

(0.22)
Within Population Difference 6.86

(3.74)
Between (Mean) POLITY Difference 0.01

(0.02)
Within POLITY Difference 0.005

(0.032)
Between (Mean) War Difference 0.12

(0.01)
Within War Difference 0.01

(0.01)

Note: NT = 23618 (N = 2450, T̄ = 9.6).

Note that:

• The effect of Distance remains the same (no surprise there),

• The effects of the other covariates are the same as those in the respective (between- or
fixed/within-effects) models in the table above, with the exception that

• The standard errors are slightly larger here (since there are more variables in the model,
and so more collinearity and marginally fewer degrees of freedom).

17



Estimating Fixed and Random Effects Models using Stata

Not surprisingly, Stata can estimate all these models, and then some. To show this, let’s
take a closer look at the refugee data we’ve been using in our example.

Summary Statistics: xtdes and xtsum

The xtdes command is a special version of describe geared toward TSCS/panel data:

. xtdes

dirdyadID: 404411, 404420, ..., 651625 n = 2450

year: 1992, 1993, ..., 2001 T = 10

Delta(year) = 1; (2001-1992)+1 = 10

(dirdyadID*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max

1 9 10 10 10 10 10

Freq. Percent Cum. | Pattern

---------------------------+------------

2256 92.08 92.08 | 1111111111

96 3.92 96.00 | .111111111

96 3.92 99.92 | 11........

2 0.08 100.00 | .1........

---------------------------+------------

2450 100.00 | XXXXXXXXXX

This tells us that:

• There are 2450 units (defined by dirdyadID), and 10 time points (defined by year) in
our data.

• The combination of dirdyadID and year uniquely identify every observation in our
dataset.

• 2256 of the 2450 units have observations on all ten years; others are missing data, in
various patterns.
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xtsum summarizes the variability in our variables...

. xtsum ln_ref_flow pop_diff distance regimedif wardiff

Variable | Mean Std. Dev. Min Max | Observations

-----------------+--------------------------------------------+----------------

ln_ref~w overall | -.6011064 .925829 -.6931472 14.13433 | N = 23618

between | .7517356 -.6931472 9.476154 | n = 2450

within | .5874289 -9.619386 10.8411 | T-bar = 9.64

| |

pop_diff overall | 0 .0274139 -.117949 .117949 | N = 23618

between | .0280993 -.1095172 .1095172 | n = 2450

within | .0015821 -.0088492 .0088492 | T-bar = 9.64

| |

distance overall | 2.200497 1.259073 0 5.652 | N = 23618

between | 1.251927 0 5.652 | n = 2450

within | 0 2.200497 2.200497 | T-bar = 9.64

| |

regime~f overall | 0 .381144 -1 1 | N = 23618

between | .3338879 -.955 .955 | n = 2450

within | .181699 -1.18 1.18 | T-bar = 9.64

| |

wardiff overall | 0 .8806492 -4 4 | N = 23618

between | .6827006 -2.3 2.3 | n = 2450

within | .5503981 -2.5 2.5 | T-bar = 9.64

These tell you the relative amount of within-unit and between-unit variation for each variable.
So,

• Distance has no within-unit variation at all,

• Most of the variation in Refugee Flows, Population Difference, POLITY Difference,
and War Difference occurs between units, rather than within – this is especially true
for Population Difference (which makes sense, since population changes very slowly).

Model Estimation: xtreg

The command for estimating panel/TSCS models generally is xtreg:

• the re option (which is also the default, no-option option) estimates a random effects
model,

• the fe option estimate a fixed (within) effects model,

• the be option estimates a between-effects model.
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