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Introduction

As the course description suggests, this is a course on the analysis of longitudinal data.
Despite the apparent obviousness of this, please note a few things:

• It is not a course on time-series analysis, econometric or otherwise.

• The substantive examples will come primarily – but not exclusively – from political
science, though I’ll try to be a bit catholic whenever possible.

• It is an advanced course; please drop the class and take something else if you’re afraid
of math.

All that said, I think the course materials will be very useful to most of you. The emphasis
is on data that have both cross-sectional and temporal variation; most commonly, this takes
the form of repeated measurements over time on multiple units of observation. We’ll talk
more about these two dimensions of variation in a bit...

Some (Non-Technical) Terminology

Throughout the course, I’ll try to be consistent in terminology and notation. So:

• We’ll use the words “unit,” “units,” and/or “units of observation” to refer to the
individual things on which we have data,

• We’ll use “observations” to refer to the measurements on each variable unit on each
unit at a given point in time; so, in nearly every case, we will have multiple observations
on each unit.

Notationally, I’ll generally use i to index units, and t to index time, with the number of units
usually being denoted by N and the number of time points by T (so that the total number
of observations is NT ). So,

• Yit indicates a variable that varies over both units and time,

• Ȳi = 1
T

∑T
t=1 Yit is the over-time mean of Y ,

• Ȳt = 1
N

∑N
i=1 Yit is the across-unit mean of Y , and

• Ȳ = 1
NT

∑N
i=1

∑T
t=1 Yit is the grand mean of Y .
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Some Conceptual Issues

Variation

The variation in a variable that has measurements both across units and over time has two
possible corresponding dimensions of variation: cross-sectional and temporal. It is entirely
possible to think of (and common to encounter) data that, despite being measured on both
dimensions, only varies on one.

Example: Survey data from a tiny, mythical panel survey:

id year gender pres pid approve

------------------------------------------------

1 1998 female clinton dem 3

1 2000 female clinton dem 3

1 2002 female bush dem 5

1 2004 female bush dem 3

------------------------------------------------

2 1998 male clinton gop 2

2 2000 male clinton gop 1

2 2002 male bush gop 4

2 2004 male bush gop 3

------------------------------------------------

3 1998 male clinton gop 2

3 2000 male clinton gop 2

3 2002 male bush gop 4

3 2004 male bush dem 1

------------------------------------------------

Note:

• Unsurprisingly, gender does not vary over time within a particular unit (respondent),
while president does not vary across units at any given time point.

• approve – a five-point measure of presidential approval – varies over both time and
units.

• pid, which measure party identification, does not vary over time for the first two
units we see here, but does (albeit a tiny bit) for the third (and could do so for other
observations in the data, in theory...).

A key point to remember is that variation is information...

• In the limit, a complete absence of variation one one dimension means that there is
nothing one can say about that phenomenon on that dimension...
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◦ E.g., if we only look at the first respondent in the above data, we can say nothing
about party identification (either how it varies over time, or its effect on anything
else in the data), since it is a constant.

◦ Likewise, if we only consider the data on 1998, we can’t say anything about
general differences across presidents, since that “variable” is constant in that year
∀ respondents.

• Similarly, any variable that varies only a little bit on one dimension can tell us com-
paratively little about phenomena on that dimension...

◦ So, pid – which varies for only one of the three respondents here – will be of little
help in explaining other within-respondent variables. In fact, anything we might
try to say about the relationship between pid and (say) gender is going to be
based on the one observation where some variation exists between the two.

All of this means that one needs to consider carefully “where” the variation in one’s data
is, and – more important – where one’s theories suggest we should see variation as well.
Consider a ridiculously simplistic rendition of two major theories of international relations:

• Realism

◦ Variation at the system level...

◦ Change over time is key (polarity, etc.), with

◦ Little (cross–sectional) variation across states at a particular time.

• Liberalism

◦ States are the key actors...

◦ Suggests that cross-sectional variation will be important, as well as temporal
change.

We’ll discuss some ways of more formally considering cross-sectional and temporal variation
in the coming few classes.

Aggregation

One thing variation across a dimension allows us to do is aggregate data along that di-
mension. Rather than considering variation along both dimensions, we can aggregate the
data (e.g., consider means or other summary measures) along that dimension. With two
dimensions of variation, we can aggregate either cross-sectionally or temporally. This can be
useful, but can also cause problems and (occasionally) be somewhat misleading.

Consider cross-sectional aggregation first. For our mythical data, we’d have:
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id gender pres pid approve

------------------------------------------

1 female ? dem 3.50

2 male ? gop 2.50

3 male ? ? 2.25

------------------------------------------

Note:

• Where there is no variation on that dimension, aggregation is both easy and loses no
information; R1 is always female, so “collapsing” her four observations into one tells
us just as much as the data above do.

• Where data vary on the dimension of aggregation, we have to choose a means of
aggregating/combining those data. Two things here:

◦ Sometimes this is not so hard. For approve, I just took means here. Note,
however, that this loses some important information, including any ability to say
anything about either change over time or temporally-varying covariates (such as
pres).

◦ For others, it isn’t so easy, particularly for nominal/categorical covariates. How
does one aggregate pres? Is it always equal to 0.5? Similarly, how to aggregate
pid, when it varies over time? One could do something like the percentage of the
time that the respondent identified with (e.g.) the GOP, but (again) that would
lose important temporal variation.

• So, these data would be somewhat useful if we were solely interested in (say) the
relationship between gender and presidential approval, and if we did not think that
relationship was moderated by other factors (such as the identity or party of the sitting
president). But, that seems pretty unlikely.

We can also aggregate by time period, which looks like this:

year female pres pid approve

------------------------------------------

1998 0.33 clinton 0.66(?) 2.33

2000 0.33 clinton 0.66(?) 2.00

2002 0.33 bush 0.66(?) 4.33

2004 0.33 bush 0.33(?) 2.33

------------------------------------------

• Once again, we can calculate means by year for a variable like approve; this will give
us an idea of the trend in that variable over time.
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• Likewise, variables that don’t vary within time periods (pres) are easy to aggregate,
and some categorical variables that do vary cross-sectionally (such as gender) can still
be aggregated, albeit with a loss of information.

• Finally, some variables like pid, we can calculate an average (or other central tendency
measure), but there is a substantial loss of information in doing so.

In both cases, aggregation can tempt one to commit the ecological fallacy : inferring individual-
level relationships on the basis of aggregate data. Ecological inference can be done – it is a
complicated topic not addressed in this class – but not through standard methods such as
regression.

The punch line: Aggregation (almost always) loses information. While there are certainly
instances where looking at higher levels of aggregation can tell us interesting things, it is
almost never the case that we can’t learn just as much about those things with disaggre-
gated data; and it is almost always the case that disaggregated data can tell us things that
aggregates cannot.

Data, Pooling, etc.

Terminology

We’re going to be talking about data in which variables vary both over time and across
cross-sectional units. We’ll always refer to the units as i = 1, 2, ...N , and to the time points
as t = 1, 2, ...T . The total number of observations (i.e., lines of data) is equal to NT . Some
general conventions for naming these kind of data are:

• Panel data generally refers to data which are cross-sectionally dominated; that
is, where N is significantly larger than T . Examples are the NES panel studies
(N = 2000, T = 3) or the Panel Study of Income Dynamics (N = large, T = 12
or so). Such data usually have a fixed T , so that these data’s asymptotics are in N ,
which is important (we’ll come back to this).

• Time-series cross-sectional (TSCS) data usually means data in which either T is
dominant, or N ≈ T . These data are common in comparative politics. But, it can also
refer to data where N is dominant, but T is larger than in panel data (e.g. all-dyads
all-years IR data, with N = several thousand and T = 50 or more). Here, N is usually
fixed, and the asymptotics are in T ; moreover, if we have enough data, we can say
something about the time-series properties of the data as well as the cross-sectional
part.

• Repeated measures data is a term that gets used more in biostats. Its useful, be-
cause it can mean any of these things, but its also vague.
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Data Structure

In panel or TSCS data, we have multiple lines of data for each unit of observation. Such
data are arranged as follows:

id t Y X1 ...
1 1 250 3.4 ...
1 2 290 3.3 ...
...

...
...

... ...
2 1 160 4.7 ...
2 2 150 4.9 ...
...

...
...

... ...

Its common to organize the data first according to units, and then within units by time
period. (In fact, some statistical packages require this arrangement for certain tests to work
properly, while others will resort your data in this way automatically).

Variation in the TSCS context

Variables in TSCS data can, obviously, vary across units, or over time, or both. Consider
some data on Supreme Court justices, by year:

• A variable that measures whether or not the justice is from the south will vary only
between justices, never “within” any particular justice.

• Conversely, a variable for the party of the sitting president will not vary across justices
in any given year (“between”), but will vary over time (“within”).

• And a variable reflecting whether or not the political party of the sitting president
is the same as that of the president that appointed the justice in the first place will
(potentially) vary both “between” and “within” a particular justice.

We can think of these three kinds of variation as reflecting variations around some mean.
Consider, for example, the variable for the number of majority and dissenting opinions
written by a justice in a given year (we call this variable writing). Simply examining the
mean and standard deviation yields:

µ = 17.94, σ = 14.14, Minimum = 0, Maximum = 103, NT = 1765

This variation occurs both “within” and “between” justices, however. One way to separate
these two concepts is to consider the justice-specific mean X̄i = 1

Ti

∑Ti

t=1Xit. This value
represents the average within-justice level of writing; comparing these differences tells us
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what the between-justice differences in writing levels are. The difference between this aver-
age and the observed value in any given year is Xit − X̄i; we think of this deviation as the
within-justice variation around the mean.

If we examine the “between” versus the “within” variation in writing separately (an easy
way is to use Stata’s -xtsum- command), we find:

σBetween = 11.24 Min = 0 Max = 65.53
σWithin = 8.46 Min = -26.59 Max = 85.24

This suggests that there is generally greater variation in levels of writing “between” justices
than there is within any given justice’s career. (This ought not be too surprising). We’ll
come back to these ideas again numerous times in the next few classes.

General TSCS Regression Issues

Think of a general regression model for cross-sectional data:

Yi = α + βXi + ui (1)

This model assumes several things:

• All the usual OLS assumptions, plus

• that the constant term is constant across different is, and

• that the effect of any given variable X on Y is constant across observations (at least,
to the extent that non-constancy isn’t specified in the model, e.g., through interaction
terms).

We can write a similar model in the TSCS context as follows:

Yit = α + βXit + uit (2)

Note that this model assumes the same things as the earlier ones, especially about the effects
of constants and covariates.

In any regression context, the two assumptions mentioned are critical; violating them leads
to a form of specification bias. In the TSCS context, these two assumptions are often going
to be problematic. This is because, since we’re observing multiple units over time, there’s
often (in fact, usually) some reason to believe that there may be differences in either α or β
over either i or t. Consider each of these possibilities.
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Figure 1: Regression Results with Varying Intercepts

Variable Intercepts

One possible violation of the above assumptions is that the intercepts vary. The most
common way this occurs is for different units to have varying intercepts:

Yit = αi + βXit + uit (3)

The slopes for each unit are the same, but the intercepts are different. Its also possible that
the intercepts vary over time, rather than over units:

Yit = αt + βXit + uit (4)

or even over both i and t:

Yit = αit + βXit + uit (5)

Most of the time, however, it is unit differences that concern us most. If we have data that
correspond to (3), but estimate a model like (2), we can get biased coefficients.

To see how this is true, consider the data in Figure 1. The actual slope (the effect of X on
Y) is equal to 1.0; however we overestimate it significantly (here, we get β̂ = 4.46, with a
standard error of 0.32) because of the different intercepts. Its just as likely that the bias
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will be the other way, however; in most instances, we just don’t know (since we likely don’t
know the actual values of the αis).

Variable Slopes

The other obvious possibility is that we have a constant intercept, but the effects of X on
Y differs across either units or (less likely) time; e.g.:

Yit = α + βiXit + uit (6)

We could also have variation in β over time, or even over both units and time.

A model like in (6) assumes that the regression lines all pass through the same point on the
Y-axis, but that their slopes differ (perhaps tremendously). As a result, the estimate of β̂
we’ll get will be an “average” of those for the individual is. The idea of a common intercept,
however, is a bit strange (at least to this social scientist), and is presented here as much for
completeness as anything. More possible (/likely) is...

Variable Slopes and Intercepts

This is when things really start to get difficult. We might, for example, have variable slopes
and intercepts for each unit i:

Yit = αi + βiXit + uit (7)

Moreover, we could instead have different αs and βs for every time point, rather than for
every unit:

Yit = αt + βtXit + uit (8)

or for both different units and time points:

Yit = αit + βitXit + uit (9)

The example in (7) is illustrated in Figure 2, which shows what you get if you estimate a
model like (2) when the data correspond to (7).

Not surprisingly, the results you get are nonsensical, underestimating some slopes, overes-
timating others, and in some cases (e.g., Bart and Lisa) even getting the sign wrong. This
points up how important accurately modeling slope- and intercept-variation in TSCS models
can be.
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Figure 2: Regression Results with Varying Slopes and Intercepts

The Error Term

Note, as well that, throughout all this discussion, we’ve been assuming that the error term
uit is (a) homoscedastic and (b) uncorrelated, both within and across i and t. Formally, that
means we need to have:

uit ∼ i.i.d.N(0, σ2) ∀ i, t (10)

If you stop and think about it, that’s a pretty tall order. In particular, it requires that:

Var(uit) = Var(ujt) ∀ i 6= j (i.e., no cross-unit heteroscedasticity)

Var(uit) = Var(uis) ∀ t 6= s (i.e., no temporal heteroscedasticity)

Cov(uit, ujs) = 0 ∀ i 6= j, ∀ t 6= s (i.e., no auto- or spatial correlation)

Remember: Residuals are (among other things) just an indicator of how good a job the
model does of explaining Y with X. In that light, these assumptions are violated if (for
example):

• Cross-unit differences mean that the model does a better job of explaining some units
than others,
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• Time effects (such as socialization, institutionalization, learning, or other such dynam-
ics) cause the model to do a better or worse job of explaining Y over time,

• Omitted variables lead to residual correlation, either across units or (more commonly)
over time.

While – in a linear model, at least – problems with the error term don’t bias coefficient
estimates, they can screw up one’s inferences pretty badly. And in nonlinear models (logits
and such) they can also lead to biases in the point estimates as well. We’ll address these
issues as we go along.

All this leads to the issue of...

Pooling

Pooling is nothing more than combining data, either across units or over time. Key to
pooling is exchangeability : the notion that, conditional on the values of the covariates, any
two observations within our data are considered to be the same (“exchangeable”). In the
panel context, one aspect of this is what is known as “poolability”.

Why Pool?

Several reasons:

• Pooling adds data. This is the number one reason for pooling data. If the assumption
of poolability holds, we can get “better” (read: more precise) estimates of our β̂s.

• Generalizability. Again, if a case can be made for model-conditional poolability,
adding different cases means we can be more sure that our data generalize to broader
sets of cases and/or longer time periods.

Issues in Pooling

Implicit in any panel data analysis, then, is the idea that the coefficients β do not vary over
subsets of the data defined along N or T . In particular, in (say) the general, restrictive
model (2):

Yit = α + βXit + uit

the implicit assumption is one of “exchangeability” – i.e., that all of the data come from the
same “regime,” that is,

• that the process governing the relationship between X and Y is exactly the same for
each i,

• that the process governing the relationship between X and Y is the same for all t,
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• that the process governing the us is the same ∀i and t as well.

Bartels (1996) lays out a nice general discussion of pooling, outside the context of panel/TSCS
data, but a lot of what he says is especially applicable to what we’re going to be studying.
Consider the general case of two “regimes”:

YA = β′AXA + uA

YB = β′BXB + uB

based on NA and NB observations, respectively, where βA and βB are K × 1 vectors of
parameters including a constant term and where, for simplicity, the us meet all the usual
requirements for regression errors, σ2

A = σ2
B, and Cov(uA, uB) = 0. The separate estimators

are simply:

β̂A,B = (X′A,BXA,B)−1X′A,BYA,B (11)

and the corresponding estimators of the variance-covariance matrices are:

̂Var(βA,B) = σ̂2
A,B(X′A,BXA,B)−1 (12)

Bartels shows that the pooled estimator β̂P is then:

β̂P = (X′AXA + X′BXB)−1(X′AYA + X′BYB)

= (X′AXA + X′BXB)−1[βA(X′AXA) + βB(X′BXB)], (13)

which is a weighted combination of the two separate βs, the weights being inversely propor-
tional to the variance-covariance matrix of that parameter vector.

In English: β̂P is a combination of βA and βB, where the “better” / more precise of the two
coefficients will dominate. Not surprisingly, this means that, ceteris paribus, the regime that
will dominate β̂P will be the one with:

• the larger N ,

• the larger values of the coefficients, and/or

• the smaller standard errors of β̂.

In addition, Bartels notes that the expectation of the pooled estimator β̂P is:

E(β̂P ) = βA + (X′AXA + X′BXB)−1X′BXB(βB − βA)

= βB + (X′AXA + X′BXB)−1X′AXA(βA − βB) (14)
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This is a nice illustration of how pooling observations from different “regimes” can yield
biases in coefficients (that is, if the latter term doesn’t go to zero).

Testing

A standard way to assess whether or not this is the case is by comparing the “fit” of the
separate regressions to that from the pooled model. Formally, we do this by considering the
sums of squared residuals:

F =
û′

P ûP−(û′
AûA+û′

BûB)

K
(û′

AûA+û′
BûB)

(NA+NB−2K)

(15)

This test, which is distributed F[K,(NA+NB−2K)] is many things:

• Most generally, it is a test based on some number of linear restrictions of the original,
general model in (9). As such, it can be formulated in a general way, as an F -test of
restrictions on a standard OLS/GLS regression model.

• In the case where K = 2 (i.e., bivariate regression with a constant), this is equal to
the t-test for (β̂A − β̂B).

• In a time-series setting, this is often referred to as a “Chow test” for structural stability
in the parameter vector (e.g., when A and B represent two different time periods in
the same time series).

• Finally, the test is only valid if σ2
A = σ2

B; if not, then there’s a more general test that
is asymptotically correct (see, e.g., Davidson and MacKinnon 1993, but also the Stata
FAQ on the topic).

Of course, if the pooling is simple (i.e., only a few covariates of interest, and a relatively small
number of possible “groups”), another approach is to estimate a model with a multiplicative
interaction term:

Yit = α + βXit + γBit + δXitBit + uit. (16)

In this model, α̂ and β̂ represent the intercepts and slopes, respectively, for the observations
in group A, while α̂+ γ̂ and β̂ + δ̂ are the intercept and slope for the observations in group
B (but, of course, you all knew that...). With this approach, we can simply test for the joint
significance of γ̂ and δ̂ to see whether groups A and B pool. Of course, this approach get
very unwieldy if we have large numbers of variables in X, and/or of there are many more
than two groups; in those instances, the Chow/Wald test is a better approach.
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Fractional Pooling

Bartels’ (somewhat Bayesian) idea is to “fractionally pool” observations, based on some
weight λ ∈ [0, 1] which the researcher assigns to (say) subset A of the data. The result is a
fractionally pooled estimator of β, call it β̂λ:

β̂λ = (λ2X′AXA + X′BXB)−1(λ2X′AYA + X′BYB) (17)

In this estimator,

• λ = 0 corresponds to the separate estimators for β̂A and β̂B,

• λ = 1 is the “fully pooled” estimator in (13),

• 0 < λ < 1 corresponds to a regression where data in regime A are given some “partial”
weighting in their contribution towards an estimate of β.

Bartels lays out a sort of empirical-Bayes rationale for doing this; its a general technique,
and pretty cool. On the other hand, I haven’t seen it used that much, probably because
many social scientists are nervous about the perceived arbitrariness of selecting (a) value(s)
for λ (which, in turn, is probably a function of the fact that so few of us are Bayesians at
heart...).

Pooling, Summarized

“(R)oughly speaking, it makes sense to pool disparate observations if the under-
lying parameters governing those observations are sufficiently similar, but not
otherwise.”

That about says it. In terms of practical advice, remember the following:

• Exchangeability is something to be explored and tested, not assumed.

• With a small number of “groups” to be pooled across, and/or a relatively small set of
covariates X, estimating a model of the form in (16) and testing for the joint significance
of the interactive terms is a viable option.

• For more complicated situations, a Chow/Wald test is a better alternative.

Analyzing Panel/TSCS Data in Stata

General Practices

When analyzing such data in Stata, its good practice to -sort- the data on the N and T
identifier variables periodically.
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The series of commands in Stata for analyzing such data all begin with the letters -xt- (for
“x-sectional time-series”). We need to tell Stata that our data are of this format in order to
use these commands. We do this by specifying the i and t variables:

. iis idvar

. tis timevar

Once we’ve done this, there are a number of regression-type commands that become avail-
able to us. Also, Stata has a few useful commands for managing TSCS/panel data...

The -expand- command

Stata’s -expand- creates multiple “copies” of observations already in the data. This is
good as a first step, when you have data that don’t vary over time but are planing on
adding/collecting some that does. Suppose we have a (very) small dataset on three countries
– the U.S., the U.K., and Japan – which included data on variables that didn’t vary over
time (e.g., government type, etc.):

ID x1 years ...
US 250 7 ...
UK 290 9 ...
JP 150 5 ...
...

...
...

... ...

Suppose we wanted to collect ten years of data, 1991-2000, for each country (giving us
NT = 30). To create a dataset with 30 lines of data, and with the existing X variables
retained for each country, we would simply type:

. expand 10

This would give us a dataset that had 10 exact copies of each existing observation. We could
then assign each line of data a year by typing:

. sort ID

. gen year = 1991

. quietly by ID : replace year=year[ n-1]+1 if year[ n-1]!=.

This gives us a dataset ready for inputting or merging time-varying data. The -expand-

command will also take variables as an argument; so if, for example, you wanted to create a
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number of years equal to the variable years in the data, you would type:

. expand years

which would create six copies of the observation for the U.S., eight of the U.K., and four for
Japan.

The -reshape- command

Stata’s -reshape- command is useful for converting data from “wide” to “long” format and
back. Think of the way we usually arrange (e.g.) TSCS data as “long”, in that we use rows
rather than columns for storing information. So, if we had data on three years worth of GDP
numbers for the three countries mentioned (i.e., NT = 9), we’d typically have it arranged as:

name year gdp

US 1980 280
US 1981 294
US 1982 303
UK 1980 121
UK 1981 124
UK 1982 131
JP 1980 176
JP 1981 192
JP 1982 212

Note that we could accomplish the same thing by storing the data with separate variables
for each of the GDP-years:

name gdp80 gdp81 gdp82

US 280 294 303
UK 121 124 131
JP 176 192 212

The -reshape- command converts data from one such format to the other. I won’t go into
the details of it right now (there are lots of options), but suffice it to say that, in many
cases, you receive (e.g.) government data in “wide” format, and need to convert it to “long”
format in order to analyze it. -reshape- makes this much easier.
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The -stack- command

-stack- does exactly that; it takes existing variables and “stacks” them into a single column.
This is useful when you have data that are in a variation of “wide” format, in that it can
act as a combination of -reshape- and -expand-. Suppose your data look like this:

name us uk jp

1980 280 121 176
1981 294 124 192
1982 303 131 212

The -stack- command will convert this onto normal (“long”-format) data in one fell swoop:

. stack us uk jp, into(gdp)

Your new data are now in “long” format, albeit minus labels (so keep good track of what goes
where). -stack- is generally more useful for smaller datasets with few variables; otherwise,
-reshape- is more flexible.

Pooling, tests, etc.

Stata makes testing for exchangeability and the like relatively easy. The -test- and
testparm commands are very versatile in this regard (and, in fact, are a practical quan-
titative analysts best friend in a range of situations).

An Example: Left Governments and Unemployment in the OECD, 1978-1994

For an example, consider some data on average annual unemployment rates on 18 OECD
countries for 17 years (1978–1994, inclusive). We’re interested in seeing if – as theories might
suggest – left governments generally seek to minimize unemployment (in exchange for higher
inflation), while right governments minimize inflation (at the cost of higher unemployment).
So, our lone X variable is the lagged percentage of the cabinet that are from left (i.e., labor,
social democratic, or Green) parties. Moreover, we’ll also try to discern if the dynamics of
the unemployment/party control relationship are different in Anglo countries (that is, the
UK and its former colonies) than in the rest of the OECD.
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Here are what the data “look like,” in terms of missing data and the like:

. xtdes

countryid: 1, 2, ..., 18 n = 18

year: 78, 79, ..., 94 T = 17

Delta(year) = 1; (94-78)+1 = 17

(countryid*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max

17 17 17 17 17 17 17

Freq. Percent Cum. | Pattern

---------------------------+-------------------

18 100.00 100.00 | 11111111111111111

---------------------------+-------------------

18 100.00 | XXXXXXXXXXXXXXXXX

There are 18 countries, 17 years, and no missing data here. If we plot the two variables, the
look like this:

. twoway (scatter unemp leftcab, msymbol(smcircle))

Figure 3: Unemployment and Left Cabinets, OECD 1978-1994
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However, it’s likely we’re missing something here, a fact we can see if we examine the scat-
terplots country-by-country:

. twoway (scatter unemp leftcab, msymbol(smcircle)), by(country)

Figure 4: Unemployment and Left Cabinets, OECD 1978-1994, by Country

Note:

• Some countries have little (or no) variation on leftcab, and some have very little on
unemp as well.

• Lots of different slopes, lots of different intercepts...

So, should we pool these data? Well, one way to find out is to test whether or not there
are differences across important variables. Here, we chose anglo, a variable that is coded
one for Australia, Canada, Ireland, New Zealand, the U.K., and the U.S., and zero elsewhere.
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We’ll start with a pooled regression:

. regress unemp leftcab

Source | SS df MS Number of obs = 306

-------------+------------------------------ F( 1, 304) = 16.18

Model | 238.221216 1 238.221216 Prob > F = 0.0001

Residual | 4475.05989 304 14.7205917 R-squared = 0.0505

-------------+------------------------------ Adj R-squared = 0.0474

Total | 4713.28111 305 15.4533807 Root MSE = 3.8367

------------------------------------------------------------------------------

unemp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

leftcab | -2.587552 .6432229 -4.02 0.000 -3.853285 -1.321819

_cons | 7.722606 .3039998 25.40 0.000 7.124396 8.320816

------------------------------------------------------------------------------

Next, we can consider separate regressions:

. regress unemp leftcab if anglo==0

Source | SS df MS Number of obs = 204

-------------+------------------------------ F( 1, 202) = 7.89

Model | 111.011084 1 111.011084 Prob > F = 0.0055

Residual | 2841.98401 202 14.0692278 R-squared = 0.0376

-------------+------------------------------ Adj R-squared = 0.0328

Total | 2952.9951 203 14.5467739 Root MSE = 3.7509

------------------------------------------------------------------------------

unemp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

leftcab | -2.229366 .793658 -2.81 0.005 -3.794283 -.6644495

_cons | 6.831329 .3969784 17.21 0.000 6.048576 7.614082

------------------------------------------------------------------------------

. regress unemp leftcab if anglo==1

Source | SS df MS Number of obs = 102

-------------+------------------------------ F( 1, 100) = 1.82

Model | 22.9381253 1 22.9381253 Prob > F = 0.1808

Residual | 1262.64035 100 12.6264035 R-squared = 0.0178

-------------+------------------------------ Adj R-squared = 0.0080
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Total | 1285.57848 101 12.7284998 Root MSE = 3.5534

------------------------------------------------------------------------------

unemp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

leftcab | -1.391711 1.032547 -1.35 0.181 -3.440255 .6568333

_cons | 8.959532 .4253936 21.06 0.000 8.115563 9.8035

------------------------------------------------------------------------------

This suggests that both the intercept and the slope are somewhat different between the two
models. But, as long as they are estimated separately, we can’t test for differences between
them. To do so, we can estimate (and test on) an interactive model:

. gen angxleft=anglo*left

. regress unemp leftcab anglo angxleft

Source | SS df MS Number of obs = 306

-------------+------------------------------ F( 3, 302) = 14.93

Model | 608.656739 3 202.88558 Prob > F = 0.0000

Residual | 4104.62437 302 13.5914714 R-squared = 0.1291

-------------+------------------------------ Adj R-squared = 0.1205

Total | 4713.28111 305 15.4533807 Root MSE = 3.6867

------------------------------------------------------------------------------

unemp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

leftcab | -2.229366 .7800663 -2.86 0.005 -3.76442 -.6943128

anglo | 2.128202 .5890937 3.61 0.000 .9689544 3.287451

angxleft | .8376555 1.325197 0.63 0.528 -1.770133 3.445444

_cons | 6.831329 .39018 17.51 0.000 6.063513 7.599145

------------------------------------------------------------------------------

. testparm anglo angxleft

( 1) anglo = 0

( 2) angxleft = 0

F( 2, 302) = 13.63

Prob > F = 0.0000
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