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Introduction

Today we’ll talk about interpreting MNL and CL models. We’ll start with general issues of model
fit, and then get to variable effects. Note that nearly everything we do for MNLs also applies to
CLs; accordingly, we’ll focus more on the former, though we’ll walk through a conditional logit
example at the end as well.

We’ll once again use the 1992 election as a running example. The data are 1473 voting respon-
dents from the 1992 National Election Study, and the response (dependent) variable is who each
respondent voted for, coded one for Bush (the elder), two for Clinton, and three for Perot. The
basic model we’ll be interpreting is an extension of the one we used in class last week; it looks like
this:

. mlogit presvote partyid age white female, basecategory(1)

Multinomial logistic regression Number of obs = 1473
LR chi2(8) = 951.58
Prob > chi2 = 0.0000

Log likelihood = -1053.6506 Pseudo R2 = 0.3111

------------------------------------------------------------------------------
presvote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
2 |

partyid | -1.135615 .0548618 -20.70 0.000 -1.243142 -1.028088
age | -.0026013 .0051396 -0.51 0.613 -.0126746 .007472

white | -.98908 .3134669 -3.16 0.002 -1.603464 -.3746961
female | -.125005 .1689499 -0.74 0.459 -.4561406 .2061307
_cons | 5.806651 .4430144 13.11 0.000 4.938358 6.674943

-------------+----------------------------------------------------------------
3 |

partyid | -.5013218 .0486977 -10.29 0.000 -.5967675 -.4058761
age | -.015565 .0050436 -3.09 0.002 -.0254503 -.0056796

white | .8791807 .4360556 2.02 0.044 .0245275 1.733834
female | -.509278 .1626614 -3.13 0.002 -.8280884 -.1904676
_cons | 1.980081 .5245439 3.77 0.000 .9519936 3.008168

------------------------------------------------------------------------------
(presvote==1 is the base outcome)
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Model Fit in the MNL Model

First, we’ll discuss overall model “fit.” Consider again a general model for i = {1, ...N}
observations where we have J possible outcomes j ∈ {1, ...J} on the dependent variable Yi,
and K independent variables Xik ∈ {Xi1...XiK} with associated k× 1 vectors of parameters
for each of the alternatives βj, so that we have βjk ∈ {βj1, ...βjK}. After running a MNL,
we’d like to know how well the model “fits” the data. To figure this out, there are several
alternatives.

The “Global” Likelihood Ratio Test

This is a test vs. the global null (that is, a test for whether all coefficients β̂ = 0∀ j, k). It
is distributed χ2

(J−1)(k−1) (where J is the number of possible outcomes and k is the number

of covariates, including the constant term), and is reported automatically by most software,
including Stata. It tells you if you can reject this null (which is often not very interesting or
useful).

Here, the value of 951.58 indicates that we can reject the null with a very high degree of
confidence. (Isn’t that special?...).

Pseudo-R2

As for the binary and ordered models, we can calculate a “pseudo”-R2 statistic that provides
a summary of model fit.

• These are usually calculated based on some function of the null and model lnLs.

• Stata uses one based on the ration of the log-likelihoods of the full and null models,
i.e., 1− lnLmodel

lnLnull
.

• Maddala (1983) explains why this usually isn’t a very good measure; the intuition is
that, even for a “perfect fit” model, the pseudo-R2 will be less than 1.0, and sometimes,
a lot less...

Here, then, the pseudo-R2 doesn’t really tell us anything that we can’t also get from the
global LR test. Frankly, I don’t advise using pseudo-R2s in MNL and CL models, though in
the end that’s your choice.

Wald & Likelihood Ratio Tests on Specific Parameters/Variables

We can also do likelihood ratio (LR) and Wald tests to examine whether specific variables
have effects, either singly (that is, on specific outcomes) or jointly (across all possible out-
comes).

LR Tests
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• “How-To”

1. To do these “by hand”, one just estimates models including (the unrestricted
model) and excluding (the restricted model) the m variable(s) in question (with
m < k, naturally).

2. The LR statistic is then just (-2 × the difference of the lnLs).

3. This is distributed as χ2
m(J−1); that is, with J − 1 degrees of freedom for each of

the m excluded variables in the restricted model.

4. Stata also automates this with the -lrtest- command; see the help file for more
info.

• The results of this test tell you if the effect of the variable(s) is/are jointly significant
across the various outcomes.

• I.e., if inclusion of those independent variable(s) helps you predict the dependent vari-
able to a statistically significant degree. Note that this is different from individual-
choice effects of the variable (i.e., t-tests).

• We can also use this method to test the hypothesis that all the variables have no joint
effect on one of the outcomes (as we did above).

Wald Tests

These are asymptotically equivalent to LR tests (provided you didn’t robust-ify your variance-
covariance matrix), and can test a range of different hypotheses. The test is described Long
(1997, pp. 161-2); to implement it in Stata , use the -test- command after estimation. The
general syntax is:

. test [equation]variable(s)

where [equation] is the coding for the outcome you’re interested in, and variable is/are
the variable(s) you’re interested in testing the effects of. Note that you need not necessarily
specify the equation or variable; if you don’t specify an equation, it tests the joint effects of
the variable(s) indicated across all possible outcome categories, while if you don’t specify a
variable, it tests the joint significance of all the variables in that outcome category. We can
also include equality statements, to test hypotheses about restrictions on coefficients across
outcomes or variables.

So, for example, we can:

• ...test whether age is jointly significant:
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. test age

( 1) [2]age = 0

( 2) [3]age = 0

chi2( 2) = 10.95

Prob > chi2 = 0.0042

• ...test whether all of the variables have a (jointly) significant effect on voting for Perot
(vs. Bush):

. test [3]

( 1) [3]partyid = 0

( 2) [3]age = 0

( 3) [3]white = 0

( 4) [3]female = 0

chi2( 4) = 121.13

Prob > chi2 = 0.0000

• ...test whether the influence of age is the same on voting for Clinton (vs. Bush) as it
is on voting for Perot (again, vs. Bush):

. test [2]age = [3]age

( 1) [2]age - [3]age = 0

chi2( 1) = 6.47

Prob > chi2 = 0.0110

• ...do the same thing for the effect of age on voting for Bush and Perot:

. test [1]age = [3]age

( 1) - [3]age = 0

chi2( 1) = 9.52

Prob > chi2 = 0.0020

Note here that:
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◦ Since we assume that β̂Bush = 0 (because he is the “baseline” category), this is
the same as testing whether (0− β̂Perot) = 0.

◦ Now, this ought to be the same as testing whether β̂Perot = 0 (two-tailed), right?

◦ And, in fact, it is: This test gives a chi-square value that’s simply equal to the
square of the t-test for β̂Perot = 0 (that is, [−3.09]2 = 9.52, with some rounding
error).

There are other tests that one might do; all are pretty straightforward to implement using
the -test- command.

Aggregate Predictions and PRE

As in the binary case, we can use in-sample predictions to get a sense of how well our
MNL/CL model “fits.” The intuition is to generate predicted probabilities for each out-
come, and then see how well the model replicates the observed distribution of outcomes on
the dependent variable.

Recall that the basic probability statement for the MNL model is:

Pr(Yi = j) =
exp(Xiβj)∑J
j=1 exp(Xiβj)

(1)

The MNL model therefore generates J predicted probabilities for each observation; i.e., the
probability that each observation will fall into each of the J categories, as a function of its
values on the independent variables Xi. One can then classify each observation into one of
the J categories, based on the highest of these probabilities, and then calculate a “reduction
in error” statistic similar to that for binary logit/probit.

Using our example, we can do this “by hand”:

. gen votehat=.

(1473 missing values generated)

. replace votehat=1 if bushhat>clinhat & bushhat>perothat

(606 real changes made)

. replace votehat=2 if clinhat>bushhat & clinhat>perothat

(829 real changes made)

. replace votehat=3 if perothat>bushhat & perothat>clinhat

(38 real changes made)

. tab2 presvote votehat, row
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-> tabulation of presvote by votehat

1=Bush, |

2=Clinton, | votehat

3=Perot | 1 2 3 | Total

-----------+---------------------------------+----------

1 | 415 77 8 | 500

| 83.00 15.40 1.60 | 100.00

-----------+---------------------------------+----------

2 | 56 619 16 | 691

| 8.10 89.58 2.32 | 100.00

-----------+---------------------------------+----------

3 | 135 133 14 | 282

| 47.87 47.16 4.96 | 100.00

-----------+---------------------------------+----------

Total | 606 829 38 | 1,473

| 41.14 56.28 2.58 | 100.00

Note a few things:

1. A “null model” (one that chose the modal category every time) would pick all Clinton,
and so would get

(
691
1473

)
= 46.9% correct.

2. By contrast, the estimated model predicts (415+619+14)
1473

= 1048
1473

= 71.15% correctly.

3. So one could say this is a proportional reduction in error (PRE) of 1048−691
1473−691

= 357
782

=
45.7%, in that it eliminates 45.7% of the “errors” remaining relative to a “null” model.

4. The model correctly predicts nearly 90% of the Clinton votes, and 83% of the Bush
votes, but only 5% of the Perot votes. In fact, the actual Perot votes are “split” almost
evenly between Clinton and Bush predictions. This is common in MNL models when
some categories have very few positive outcomes overall.

At the same time, PRE statistics like this one can have their problems as well...

• There is sometimes a tendency for MNL models to predict most or all observations
in one category, even if the variables seem to have significant effects; this is especially
true if the dependent variable is very skewed into one category. In such cases, one’s
PRE won’t be very impressive, since one can’t improve on the “null” (modal) response
very much anyway.

• One way around this problem is to calculate the predicted probabilities, then see if,
for data with a particular “pattern” of independent variable values, how closely the
proportion of cases in each category matches those probabilities.
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Interpretation of MNL Variable Effects

Typically, interpreting MNL coefficients is not especially easy (there are lots or parameters,
a nonlinear form, etc.) A few key things to remember:

1. Always bear in mind what your baseline, comparison category is; all reported results
are relative to this.

2. Its generally easier to talk in terms of probabilities (either predictions or changes), or
even odds ratios, than to discuss partials/first derivatives.

Odds Ratios

The MNL can be thought of as a log-odds model, where the log of the ratio of two probabilities
is a function of the independent variables:

ln

[
Pr(Yi = j|X)

Pr(Yi = j′|X)

]
= X(β̂j − β̂j′) (2)

If (as is always the case, as a practical matter) we set the coefficients of one category (say,
β̂j′) to zero, then we just get:

ln

[
Pr(Yi = j|X)

Pr(Yi = j′|X)

]
= Xβ̂j

One nice thing about this approach is that it is linear in the variables ; this in turn means
that we can get the change in the odds ratio for category j associated with a particular
variable Xk by just examining exp(β̂jk)...

• So for a one-unit change in Xk, the odds of observing the relevant category j (versus
the baseline category) will change by exp(β̂jk).

• And for a change of some value δ in Xk, the relative odds of the selected outcome j,
relative to the baseline, will change by exp(β̂jk × δ).

Consider again the results from the example model, above. Stata will (naturally) automati-
cally give you the odds ratios; here, they are referred to as the “relative risk ratios”:

. mlogit, rrr

Multinomial logistic regression Number of obs = 1473

LR chi2(8) = 951.58

Prob > chi2 = 0.0000

Log likelihood = -1053.6506 Pseudo R2 = 0.3111

------------------------------------------------------------------------------

presvote | RRR Std. Err. z P>|z| [95% Conf. Interval]
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-------------+----------------------------------------------------------------

2 |

partyid | .3212245 .017623 -20.70 0.000 .2884764 .3576903

age | .9974021 .0051262 -0.51 0.613 .9874054 1.0075

white | .3719187 .1165842 -3.16 0.002 .2011984 .6874982

female | .8824925 .149097 -0.74 0.459 .6337247 1.228914

-------------+----------------------------------------------------------------

3 |

partyid | .6057295 .0294976 -10.29 0.000 .5505886 .6663927

age | .9845555 .0049657 -3.09 0.002 .9748708 .9943365

white | 2.408925 1.050425 2.02 0.044 1.024831 5.662322

female | .6009293 .097748 -3.13 0.002 .4368836 .8265726

------------------------------------------------------------------------------

(presvote==1 is the base outcome)

These tell us that:

• A one unit increase in partyid corresponds to:

◦ A decrease in the log-odds of a Clinton vote, versus a vote for Bush, of exp(−1.136) =
0.321 (or about 68 percent), and

◦ A decrease in the log-odds of a Perot vote, versus a vote for Bush, of exp(−0.501) =
0.606 (or about 40 percent).

◦ These are large decreases in the odds – not surprisingly, more Republican voters
are much more likely to vote for Bush than for Perot or Clinton.

• Similarly, female voters are:

◦ No more or less likely to vote for Clinton than for Bush, but

◦ Roughly 40 percent less likely to have voted for Perot.

• And so forth...

Note that Stata also reports the standard errors and confidence intervals for the relative risk
ratios, which are useful as well. If you’re interested in other comparisons (e.g., the effect of
changes in partyid on voting for Perot versus Clinton), it is probably easiest just to rerun
the model with a different “baseline” category to get the relevant statistics.
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Partial Changes / Marginal Effects

The partial change in Pr(Yi = j) for a particular variable Xk is:

∂Pr(Yi = j)

∂Xk

= Pr(Yi = j|X)

[
β̂jk −

J∑
j=1

β̂jk × Pr(Yi = j|X)

]
(3)

Note a few things about this:

• The marginal effect varies as a function of a bunch of things, including

◦ The probability itself,

◦ The value of the coefficient estimate,

◦ The sums of the other coefficients for that covariate.

• This means that the
[
β̂jk −

∑J
j=1 β̂jk × Pr(Yi = j|X)

]
term signs the marginal effect,

which in turn means that the marginal effect may or may not have the same sign as
the coefficient estimate itself.

You will be unsurprised to learn that Stata will calculate these for you, using the -mfx-

command. Note that one has to do so separately for each of the J possible outcomes:

. mfx, predict(p outcome(1))

Marginal effects after mlogit

y = Pr(presvote==1) (predict, p outcome(1))

= .28317841

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

partyid | .1847824 .00899 20.55 0.000 .167161 .202404 3.75492

age | .0014627 .00092 1.60 0.110 -.000332 .003258 45.8873

white*| .1016 .04799 2.12 0.034 .007532 .195668 .878479

female*| .0529949 .02972 1.78 0.075 -.005254 .111243 .514596

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx, predict(p outcome(2))

Marginal effects after mlogit

y = Pr(presvote==2) (predict, p outcome(2))

= .46220238
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------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

partyid | -.223283 .01092 -20.45 0.000 -.244678 -.201888 3.75492

age | .0011852 .00111 1.07 0.284 -.000984 .003355 45.8873

white*| -.3135228 .05406 -5.80 0.000 -.419479 -.207567 .878479

female*| .0290831 .03582 0.81 0.417 -.041126 .099292 .514596

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx, predict(p outcome(3))

Marginal effects after mlogit

y = Pr(presvote==3) (predict, p outcome(3))

= .25461921

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

partyid | .0385005 .00766 5.03 0.000 .02349 .053511 3.75492

age | -.0026479 .00083 -3.20 0.001 -.00427 -.001026 45.8873

white*| .2119229 .03084 6.87 0.000 .151475 .272371 .878479

female*| -.0820779 .02659 -3.09 0.002 -.134191 -.029965 .514596

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

Notice here that:

• In its usual way, Stata reports discrete probability changes for dummy covariates; the
others can be thought of as “slopes.”

• Also, many of the marginal effects have different signs than the coefficients themselves.
For example, the β̂ for partyid for Perot (vs. Bush) is strongly negative, but the
marginal effect (at means of the covariates) is positive. We’ll see an illustration of why
this is the case in a bit, when we get to predicted probabilities.

For several reasons (outlined at some length in Long and Maddala), the partial effect is not
the best of a variable’s influence on Pr(Yi = j)...

• It depends (almost) entirely on the values at which the other variables are set when
the derivative is taken,

• It may or may not have the same sign as the coefficient itself, and
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• Its sign may change with the value of the variable in question (not unlike in the ordered
models...).

In my humble opinion, in general, you’re better off not using marginal effects in MNL/CL
models; there are better interpretation methods out there.

Predicted Probabilities and Probability Changes

We can use the basic probability statement of the MNL/CL model to generate predictions
for the probability of each category, a lá binary logit/probit. As in those models, we’re
required to select and set the values of the other independent variables (typically means or
medians). We can then do the usual stuff:

• Examine predictions across ranges of independent variables.

• Examine changes in predictions with unit/std. dev./min-max changes in independent
variables.

• Plot any/all of the above, as well as their confidence intervals.

In-Sample Predictions

The -predict- command in Stata will generate J in-sample predicted values for each obser-
vation, one for each category of the dependent variable. However, when using -predict-,
it is crucial to tell Stata which equation (outcome) you want the predicted values for, using
the -outcome- option:

. predict bushhat, outcome(1)

(option pr assumed; predicted probability)

This creates a new variable bushhat, which is equal to the model-predicted probability that
each voter in the sample would vote for Bush, based on the values of his or her covariates;
that is,

̂Pr(presvotei = Bush) =
exp(Xiβ̂Bush)∑J
j=1 exp(Xiβ̂j)

=
1∑J

j=1 exp(Xiβ̂j)

Similarly:

. predict clinhat, outcome(2)

(option pr assumed; predicted probability)

. predict perothat, outcome(3)

(option pr assumed; predicted probability)
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yield predictions for Clinton and Perot, respectively.

What do we do with these? One possibility is to plot these predicted probabilities as a func-
tion of one (or more) covariate(s). Here, we’ll again focus in partyid:

. twoway (mspline bushhat partyid, sort lcolor(black) lpattern(solid) lwidth(medthick))

(mspline clinhat partyid, sort lcolor(black) lpattern(shortdash) lwidth(medthick))

(mspline perothat partyid, sort lcolor(black) lpattern(longdash) lwidth(medthick)),

ytitle(Predicted Probability) xtitle("Party Identification: 1 = Strong Democrat, 7

= Strong Republican") xscale(range(1. 7.)) xlabel(1(1)7) legend(cols(3) order(1

"Pr(Bush)" 2 "Pr(Clinton)" 3 "Pr(Perot)"))

Figure 1: In-Sample Predicted Probabilities, by partyid (Median Splines)

The results conform with what we might expect: Democrats voting for Clinton, Republicans
for Bush, and (mostly) independents for Perot. One can do a similar thing for binary
covariates, in which case something like a boxplot is often better:

. graph box bushhat clinhat perothat, medtype(cline) medline(lcolor(black) lpattern(solid)
lwidth(medium)) over(white) box(1, fcolor(cranberry) lcolor(black)) box(2, fcolor(dknavy)
lcolor(black)) box(3, fcolor(yellow) lcolor(black)) marker(1, msymbol(smcircle) msize(vsmall)
mcolor(black)) marker(2, msymbol(smdiamond) msize(vsmall) mcolor(black)) marker(3,
msymbol(smsquare) msize(vsmall) mcolor(black)) legend(cols(3) order(1 "Pr(Bush)" 2
"Pr(Clinton)" 3 "Pr(Perot)"))

12



Figure 2: In-Sample Predicted Probabilities, by white (Boxplots)

This latter plots shows the median and distribution of voters’ predicted probabilities of voting
for each candidate, across different values of white. Note that there are large differences
between whites and non-whites on the probabilities for Bush and Clinton, and relatively
smaller ones for Perot.

Out-of-Sample Predictions

In a manner analogous to that for binary response models, we can also generate out-of-sample
predictions on simulated data, in order to illustrate hypothetical examples. Here, we’ll focus
on changes in the predicted probabilities across different values of partyid. Doing so is
accomplished exactly like before:

. clear

. set obs 13
obs was 0, now 13

. gen partyid = (_n+1)/2

. gen age=45.887

. gen white=1
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. gen female=1

. save MNLsim.dta
file MNLsim.dta saved

. use MNLData.dta

. mlogit presvote partyid age white female, basecategory(1)

(output omitted)

. use MNLsim.dta

. predict bushhat, outcome(1)
(option pr assumed; predicted probability)

. predict clinhat, outcome(2)
(option pr assumed; predicted probability)

. predict perothat, outcome(3)
(option pr assumed; predicted probability)

. gen zero=0

. gen one=1

. gen bushperot=bushhat+perothat

These last three variables will come in handy in just a bit. The natural first thing to do is
to plot the predicted probabilities as a function of the variable of interest:

. twoway (line bushhat partyid, sort lcolor(black) lpattern(solid) lwidth(medthick))
(line clinhat partyid, sort lcolor(black) lpattern(shortdash) lwidth(medthick)) (line
perothat partyid, sort lcolor(black) lpattern(longdash) lwidth(medthick)), ytitle(Predicted
Probability) xtitle("Party Identification: 1 = Strong Democrat, 7 = Strong Republican")
legend(cols(3) order(1 "Pr(Bush)" 2 "Pr(Clinton)" 3 "Pr(Perot)"))
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Figure 3: Out-Of-Sample Predicted Probabilities, by partyid

Not surprisingly, this looks a lot like the in-sample smoothed plot: Democrats support Clin-
ton, Republicans Bush, and independents Perot.

One can also plot something akin to “cumulative” probabilities across different categories:

. twoway (rarea bushhat zero partyid, sort lcolor(black) fcolor(cranberry)) (rarea
bushhat bushperot partyid, sort lcolor(black) fcolor(yellow)) (rarea bushperot one
partyid, sort lcolor(black) fcolor(dknavy)), ytitle(Predicted Probability) xtitle("Party
Identification: 1 = Strong Democrat, 7 = Strong Republican") xscale(range(1. 7.))
xlabel(1(1)7) legend(cols(3) order(1 "Pr(Bush)" 2 "Pr(Perot)" 3 "Pr(Clinton)"))
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Figure 4: “Cumulative” Out-Of-Sample Predicted Probabilities, by partyid

Here, the “thickness” of the region at any given value of partyid tells you the (median
predicted) probability that a voter with that level of party identification will choose that
candidate.

Finally, we can use -predict- to generate confidence intervals around these predictions,
though this takes just a little extra work:

. predict bushXB, xb outcome(1)

. predict clintonXB, xb outcome(2)

. predict perotXB, xb outcome(3)

. predict bushSE, stdp outcome(1)

. predict clintonSE, stdp outcome(2)

. predict perotSE, stdp outcome(3)

. gen bushUB = (exp(bushXB+(1.96*bushSE))) / ((exp(bushXB+(1.96*bushSE))) +
(exp(clintonXB+(1.96*clintonSE))) + (exp(perotXB+(1.96*perotSE))))

. gen bushLB = (exp(bushXB-(1.96*bushSE))) / ((exp(bushXB-(1.96*bushSE))) +
(exp(clintonXB-(1.96*clintonSE))) + (exp(perotXB-(1.96*perotSE))))
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. gen clintonUB = (exp(clintonXB+(1.96*clintonSE))) / ((exp(bushXB+(1.96*bushSE))) +
(exp(clintonXB+(1.96*clintonSE))) + (exp(perotXB+(1.96*perotSE))))

. gen clintonLB = (exp(clintonXB-(1.96*clintonSE))) / ((exp(bushXB-(1.96*bushSE))) +
(exp(clintonXB-(1.96*clintonSE))) + (exp(perotXB-(1.96*perotSE))))

. gen perotUB = (exp(perotXB+(1.96*perotSE))) / ((exp(bushXB+(1.96*bushSE))) +
(exp(clintonXB+(1.96*clintonSE))) + (exp(perotXB+(1.96*perotSE))))

. gen perotLB = (exp(perotXB-(1.96*perotSE))) / ((exp(bushXB-(1.96*bushSE))) +
(exp(clintonXB-(1.96*clintonSE))) + (exp(perotXB-(1.96*perotSE))))

Which we can then plot as:

. twoway (rarea bushUB bushLB partyid, sort fcolor(cranberry)) (rarea perotUB perotLB
partyid, sort fcolor(yellow)) (rarea clintonUB clintonLB partyid, sort fcolor(dknavy)) (line
bushhat partyid, lcolor(black) lpattern(solid) lwidth(medthick)) (line clinhat partyid,
lcolor(black) lpattern(shortdash) lwidth(medthick)) (line perothat partyid, lcolor(black)
lpattern(longdash) lwidth(medthick)), ytitle(Predicted Probability) xtitle("Party Identification:
1 = Strong Democrat, 7 = Strong Republican") xscale(range(1. 7.)) xlabel(1(1)7)
legend(cols(3) order(1 "Pr(Bush)" 2 "Pr(Perot)" 3 "Pr(Clinton)"))

Figure 5: Out-Of-Sample Predicted Probabilities, by partyid, with 95% Confidence Inter-
vals
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Other Stata - Based Alternatives

Finally, there are the usual other tools for calculating differences in predicted values associ-
ated with changes in the independent variables.

• Long’s -spost- package of routines in Stata will automatically calculate predicted
values and changes in predicted values associated with changes in covariates; see the
routines for more details.

• In addition, Clarify also works with the -mlogit- command.

Conditional Logit

Interpreting conditional logit results is actually somewhat easier than those for MNL, in part
because the response variable is a binary indicator, just like in standard binary logit/probit
models. The example model we’ll work with is this one, from the 1992 presidential election:

. use CLdata.dta, clear

. clogit vote FT clintondummy perotdummy PIDxClinton PIDxPerot, group(caseid)

Conditional (fixed-effects) logistic regression Number of obs = 4419

LR chi2(5) = 1764.49

Prob > chi2 = 0.0000

Log likelihood = -736.0092 Pseudo R2 = 0.5452

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

FT | .0629875 .0032175 19.58 0.000 .0566813 .0692937

clintondummy | 2.812737 .2687999 10.46 0.000 2.285899 3.339576

perotdummy | .9435437 .2856252 3.30 0.001 .3837286 1.503359

PIDxClinton | -.6318723 .062255 -10.15 0.000 -.7538899 -.5098548

PIDxPerot | -.1921175 .057032 -3.37 0.001 -.3038981 -.0803369

------------------------------------------------------------------------------

The model thus incorporates both covariates that vary only across respondents (partyid)
and one that varies across both alternatives and respondents (the “feeling thermometer”
variable FT).

Odds Ratios and Marginal Effects

The CL model is also a model of proportional odds, which means that the odds ratio has a
particularly simple form:
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ln

[
̂Pr(Yij = 1|X)

̂Pr(Yij = 0|X)

]
= Xβ̂ (4)

which in turn means that the odds ratio associated with a one-unit change in some particular
covariate Xk is just

̂OR∆Xk=1 = exp(β̂k)

Of course, we can generate these things automatically, using the -or- subcommand:

. clogit, or

Conditional (fixed-effects) logistic regression Number of obs = 4419

LR chi2(5) = 1764.49

Prob > chi2 = 0.0000

Log likelihood = -736.0092 Pseudo R2 = 0.5452

------------------------------------------------------------------------------

vote | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

FT | 1.065014 .0034267 19.58 0.000 1.058318 1.071751

clintondummy | 16.65545 4.476983 10.46 0.000 9.834527 28.20715

perotdummy | 2.569069 .7337909 3.30 0.001 1.467747 4.496767

PIDxClinton | .5315956 .0330945 -10.15 0.000 .4705327 .6005828

PIDxPerot | .8252099 .0470633 -3.37 0.001 .7379361 .9228054

------------------------------------------------------------------------------

This lets us know that (e.g.) a one-degree increase in the feeling thermometer towards a
particular candidate increases the odds of voting for that candidate by about 6.5 percent,
with a 95% c.i. of 5.8 - 7.2 percent. The interpretation is a bit more challenging for the
observation-specific variables, since they require that we consider their interaction with the
choice-specific dummy variables, but doing so only requires the same straightforward appli-
cation of techniques for interpreting interaction terms we’ve used before.

We can also consider the marginal effects (partial derivatives) for the conditional logit model.
Those have a somewhat more straightforward interpretation than in the MNL, though they
still depend critically on the existing probabilities. The -mfx- command in Stata once again
calculates these automatically:
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. mfx, predict(pu0)

Marginal effects after clogit

y = Pr(vote|fixed effect is 0) (predict, pu0)

= .96831689

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

FT | .0019324 .00024 8.03 0.000 .001461 .002404 50.7882

clinto~y*| .0721238 .01344 5.36 0.000 .045775 .098472 .333333

perotd~y*| .0257466 .00749 3.44 0.001 .011061 .040432 .333333

PIDxCl~n | -.0193854 .00392 -4.94 0.000 -.027077 -.011694 1.25164

PIDxPe~t | -.005894 .00196 -3.01 0.003 -.009726 -.002062 1.25164

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

Importantly, here we have to specify the -pu0- prediction option; the results are marginal
effects calculated assuming that the observation-specific “fixed effect” is equal to zero (more
on this below). In this case, that means that the “baseline” probability is quite high, which
means that the “slopes” / changes are very small; one could use the -at()- option in -mfx-

to change this.

Predicted Probabilities

Finally, we can (and should) calculate and plot predicted probabilities, both in- and out-
of-sample, as well as their associated measures of uncertainty. Here again, the approach is
familiar; for the in-sample variety, for example, we use:

. predict votehat
(option pc1 assumed; conditional probability for single outcome within group)

. predict altvotehat, pu0

. twoway (scatter votehat FT, sort msymbol(smcircle) mcolor(black) msize(vsmall)) (scatter
altvotehat FT, sort msymbol(plus) mcolor(cranberry) msize(medsmall)) (mspline votehat
FT, sort bands(3) lcolor(black) lpattern(solid) lwidth(medthick)) (mspline altvotehat FT,
sort bands(3) lcolor(cranberry) lpattern(dash) lwidth(medthick)), ytitle(Predicted Probability)
xtitle(Feeling Thermometer Score) xscale(range(0. 100.)) xlabel(0(20)100) legend(order(1
"Predicted Probability" 2 "Predicted Probability | Fixed Effect = 0") size(medsmall))
legend(region(lcolor(none)))
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Figure 6: In-Sample Predicted Probabilities, by FT (with median splines)

Here, I’ve left the actual (noisy) predictions in the plot as well as their smoothed values.
Notice the differences:

• The circles are the default (“pc1”) predictions; these assume that there can be only one

positive response per subject, and so restrict the predictions so that
∑J

j=1
̂Pr(Yij = 1|Xi) =

1.0. In-sample, these are almost always the one we want to pay attention to.

• The crosses are the predictions assuming that the observation-level “fixed effect” –
that is, the subject-specific intercept that is part of the CL model – is equal to zero
(denoted by “pu0”). As a result,

◦ The predictions within an observation no longer need sum to 1.0, and

◦ On average, these predicted values are larger than those for pc1.

One could do a similar set of plots for out-of-sample predictions, using simulated data and
following the general contours described for the MNL model (above).

Finally: MNL / CL are far from the only model for unordered, categorical dependent vari-
ables. Next time, we’ll discuss some others, and do some comparisons.
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