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Introduction

For the next couple weeks we’ll be talking about unordered, polychotomous dependent vari-
ables. Examples include:

• Voter choice (e.g. Bush/Clinton/Perot, Labour/liberal/Conservative, etc.)

• Voting in legislatures (e.g. yea/nay/prestent).

• Political strategy by interest groups (choice to lobby/litigate/protest).

• Decisions by nations to join one of several international organizations.

• Economics: Occupational choice, marketing (choosing brands of tuna), etc.

• Others?

Q: Where do variables like this come from?

• Some are “natural” types (e.g. discrete choices)...

◦ Votes for Presidential candidates.

◦ Elazar’s “types” of states (individualistic, moralistic, traditionalistic).

• Others are “aggregates”:

◦ For example: Famous study by Schmidt and Strauss (1975) on occupational at-
tainment:

· They wanted to explain occupational choice, BUT there are lots of job types.

· Divided up types of jobs: menial, blue-collar, craft, white-collar, and profes-
sional.

◦ Or, we might classify international interactions into economic, political, military,
etc.

◦ Obviously, we need to be sensitive to classification schemes when making such
classifications.

· Different classifications = different results.

· May consider some sort of data reduction procedure first (e.g. factor analysis).

· Techniques also offer some tests for whether classification schemes are OK or
not.
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ALSO: What about ordered categories?

• If the categories are ordered, using an unordered model has its ups and downs.

◦ Good: Allows you to get around the “parallel regression” idea.

◦ In other words, the independent variables can have different effects across different
categories.

◦ Bad: Is inefficient (doesn’t use information about the ordering of the categories).

• Conversely, if you use ordered probit/logit on unordered categories, you get garbage.

• One option is to do it both ways, and compare estimates, etc. (more on this later).

Multinomial choice models are being much more widely used...

• Folks are starting to realize that simply dichotomizing polychotomous variables can be
very misleading.

• E.g., the Whitten and Palmer article:

◦ Voter choice in multi-party elections needs to be modeled as what it is: a choice
across a range of options.

◦ These models let you extract additional information out of your data.

• The software is also readily available (more on this in a bit as well).

Today we’ll talk about the multinomial logit (“MNL”) and “conditional logit” (“CL”) mod-
els; though, as we’ll see, they’re really the same model.

Motivation(s)

There are several ways of motivating the multinomial logit model...

As A Model of Discrete Outcomes

This is the motivation Long takes in his book. Consider once again a dataset of N individuals
i = {1, 2, ...N}, and a dependent variable Yi which can take on any of J unordered values.

• Call Pr(Yi = j) = Pij, and note that, by definition,
∑J

j=1 Pij = 1 (that is, every
observation has one realization of the J possible outcomes).

• We want to allow the probability of Yi = j ∈ J to vary as a function of some k
independent variable(s) Xi, indexed by a k × 1 vector of parameters specific to that
outcome βj.
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• To insure that each of these probabilities are positive, we use the exponential function:

Pij = exp(Xiβj)

• But now
∑J

j=1 Pij 6= 1, which (by definition) it has to. So...

• ...we rescale the Pijs, by dividing each by the sum of all the Pijs:

Pr(Yi = j) ≡ Pij =
exp(Xiβj)∑J
j=1 exp(Xiβj)

(1)

That way, observation i’s probability associated with category j is expressed as a
fraction of the sum of all of observation i’s probabilities across the various categories
J . That ensures that Pr(Yi = j) ∈ (0, 1) and that

∑J
j=1 Pr(Yi = j) = 1.0.

Equation (1) provides us with our primary statement of probability for the MNL model.
But, this model is also unidentified ; if we know the (J − 1) × k values of β1, β2, ...βJ−1,
then we also know the probability of choosing the remaining alternative. Put differently,
this model can have an infinite number of parameters which will generate the identical set
of probabilities – not unlike the situation with the constant term in the ordered probit/logit
models.

We deal with this in the usual way: by imposing constraints on the parameters.

• The most common is to set the parameters for one of the J alternatives to zero (usually
the “first” one, i.e., β1).

• This is referred to as the baseline (or omitted) category, and it provides the “reference
point” for the other probabilities.

• It is the alternative to which the others are compared when the model’s coefficients
are estimated.

• Note that when we do this, the formula for Pr(Yi = 1) reduces to:

1

1 +
∑J

j=2 exp(Xiβ′
j)

and that for the other J − 1 alternatives are:

exp(Xiβ
′
j)

1 +
∑J

j=2 exp(Xiβ′
j)

where β′
j = βj − β1 are the “rescaled” parameters (that is, they express the influence

of the various Xs on Pr(Yi = j) relative to Pr(Yi = 1)).

3



An Alternative Motivation: The Discrete Choice Model

Like we did with the binary choice model, consider an individual i choosing among J alter-
natives.

• S/he has a utility Uij associated with each choice j.

• That utility has a stochastic (random) part and a systematic part; that is, Uij = µi+εij.

• The systematic part is a function of some variables associated with the individual,
who may give different weights to those characteristics across alternatives (that is,
µi = Xiβj).

• The individual chooses among the alternatives in such a way that maximizes his or her
utility, so that

Pr(Yi = j) = Pr(Uij > Ui` ∀ ` 6= j ∈ J)

= Pr(µi + εij > µi + εi` ∀ ` 6= j ∈ J)

= Pr(Xiβj + εij > Xiβ` + εi` ∀ ` 6= j ∈ J)

= Pr(εij + Xiβj −Xiβ` > εi` ∀ ` 6= j ∈ J) (2)

• In other words, the chosen alternative is the one in which the difference between its
stochastic component and that of any alternative is greater than the difference in the
systematic parts.

• This can happen either because εij is large, or because Xiβj is large, or both...

Now, what is the probability of (2) happening? To answer that, we need (as we’ve always
done so far) to specify the distribution of the error terms εij.

• We could use a multivariate normal distribution; this would yield a multivariate probit
model. We’ll come back to this alternative a bit later.

• Instead, we choose a standard (mean-zero, variance-one) Type I Extreme Value Distri-
bution (a.k.a. a Gumbel distribution).

◦ Its density function (PDF) is f(ε) = exp[−ε− exp(−ε)].

◦ Its distribution function (CDF) is
∫

f(ε) ≡ F (ε) = exp[− exp(−ε)].

◦ The density and CDF are illustrated in Figure 1...
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Figure 1: A Type I Extreme Value PDF and CDF

Now, if the errors in the random utility model are independently and identically distributed
according to a Type I Extreme Value distribution, then:

Pr(Yi = j) = Pr(Uj > U1, Uj > U2, ...Uj > UJ)

=

∫
f(εj)

[∫ εij+Xiβj−Xiβ1

−∞
f(ε1)dε1 ×

∫ εij+Xiβj−Xiβ2

−∞
f(ε2)dε2 × ...

]
dεj

=

∫
f(εj)× exp[− exp(εij + Xiβj −Xiβ1)]× exp[− exp(εij + Xiβj −Xiβ2)]× ...dεj

=
exp(Xiβj)∑J
j=1 exp(Xiβj)

In other words, we wind up with an MNL model.1

1Maddala (1983, pp. 60-61) offers a somewhat different derivation of this model.
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Estimation

Either way we motivate the model, we can estimate it using regular maximum likelihood
methods. To do this, we once again consider the joint probability of observing each of the
actual Yis given the Xs.

• The probability that Yi = j is specified in (1), above...

• As we did in the ordered-variable case, define a variable δij = 1 if Yi = j and 0
otherwise.

We can then write the likelihood for a single observation as:

Li =
J∏

j=1

[Pr(Yi = j)]δij . (3)

We can take the product across all N observations to get the likelihood for all the data:

L =
N∏

i=1

J∏
j=1

[Pr(Yi = j)]δij (4)

and we then take the log of this, noting the formula for Pr(Yi = j) in (1), above:

ln L =
N∑

i=1

J∑
j=1

δij ln

(
exp(Xiβj)∑J
j=1 exp(Xiβj)

)
(5)

Notes on Estimation

Maddala (1983) shows that this likelihood is very well-behaved...

• The first and second derivatives are quite easy.

• The second derivative is everywhere negative definite, meaning that the function is
globally concave.

• That means that Newton-Raphson will always converge to a global maximum (and so
N-R is almost always used).

Maximization of (5) with respect to the parameters yields MLEs for the β̂js. Note that there

are separate sets of β̂s for each of the alternatives, minus the omitted baseline category (which
are implicitly restricted to equal zero). Each coefficient reflects the change in the probability
of that outcome, relative to that of the omitted category, associated with a change in the
independent variable. Moreover, the coefficients are related in a very specific way (as we’ll
see in a minute...).
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An Example: Political Party and Voting in the 1992 U.S. Presiden-
tial Election

To illustrate the multinomial logit model, we’ll look at some data on the 1992 Presidential
election, from the ANES...

• Y is presidential vote chice, with Bush=1, Clinton=2, and Perot=3 (valid N = 1473).

• The lone covariate is political party identification, the usual seven-point ANES measure
ranging from one (for “Strong Democrats”) to seven (for “Strong Republicans”).

• In the first model, the omitted category is Bush:

. mlogit presvote partyid, baseoutcome(1)

Multinomial logistic regression Number of obs = 1473

LR chi2(2) = 891.93

Prob > chi2 = 0.0000

Log likelihood = -1083.4749 Pseudo R2 = 0.2916

------------------------------------------------------------------------------

presvote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

2 |

partyid | -1.163168 .0545618 -21.32 0.000 -1.270107 -1.056229

_cons | 4.842495 .2373171 20.41 0.000 4.377362 5.307628

-------------+----------------------------------------------------------------

3 |

partyid | -.4826514 .0475563 -10.15 0.000 -.57586 -.3894427

_cons | 1.815236 .245572 7.39 0.000 1.333923 2.296548

------------------------------------------------------------------------------

(presvote==1 is the base outcome)

We’ll talk more about how to interpret these results next week. For now, consider two things:

• The positive coefficient estimates indicate that, as voters get more Republican, they
are (much) less likely to vote for Clinton (vs. Bush), and (somewhat) less likely to vote
for Perot (again, as compared to Bush).

• Changing the “baseline” category changes the coefficients, but yields the same results.
For example, if we use the -baseoutcome()- option to specify Clinton as the omitted
(baseline) category, we get:
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. mlogit presvote partyid, baseoutcome(2)

Multinomial logistic regression Number of obs = 1473

LR chi2(2) = 891.93

Prob > chi2 = 0.0000

Log likelihood = -1083.4749 Pseudo R2 = 0.2916

------------------------------------------------------------------------------

presvote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1 |

partyid | 1.163168 .0545578 21.32 0.000 1.056236 1.270099

_cons | -4.842495 .2372982 -20.41 0.000 -5.307591 -4.377399

-------------+----------------------------------------------------------------

3 |

partyid | .6805163 .0477682 14.25 0.000 .5868923 .7741403

_cons | -3.027259 .1782498 -16.98 0.000 -3.376622 -2.677896

------------------------------------------------------------------------------

(presvote==2 is the base outcome)

Note the differences in the coefficient estimates as compared to the first set. Because we’re
now comparing Bush with Clinton, the first coefficient is the same, but the sign is reversed:
now increasing Republicanism results in an increase in the odds of voting for Bush (over
Clinton). Likewise, note that the coefficient for the Clinton-Perot comparison is simply the
difference between the Bush-Clinton and Bush-Perot comparisons in the first model (i.e.,
-0.47303 - (-1.13178) = 0.65875).

We can do a similar thing if we omit Perot as the “baseline” category:
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. mlogit presvote partyid, baseoutcome(3)

Multinomial logistic regression Number of obs = 1473

LR chi2(2) = 891.93

Prob > chi2 = 0.0000

Log likelihood = -1083.4749 Pseudo R2 = 0.2916

------------------------------------------------------------------------------

presvote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1 |

partyid | .4826514 .0475563 10.15 0.000 .3894427 .57586

_cons | -1.815236 .245572 -7.39 0.000 -2.296548 -1.333923

-------------+----------------------------------------------------------------

2 |

partyid | -.6805163 .04777 -14.25 0.000 -.7741438 -.5868889

_cons | 3.027259 .1782539 16.98 0.000 2.677888 3.37663

------------------------------------------------------------------------------

(presvote==3 is the base outcome)

Here,

• The estimate for the Perot-Clinton comparison is just the negative of that for the
previous Clinton-Perot one, and

• That for the Perot-Bush comparison is the negative of that for the Bush-Perot com-
parison in the first table.

Note as well that in all three models, all other statistics – the log-likelihood, the χ2, goodness-
of-fit, etc. – are identical. This is because the models and data are the same; the only thing
that is changing is the reference / “baseline” category.

Multinomial Logit vs. Binary Logit

One question you might have at this point is how multinomial logit compares to binary (that
is, choice-by-choice) logit. One can, for example, imagine estimating a model where each
choice (=1) is contrasted with all others (=0); for example, a model of whether or not each
survey respondent voted for Bush, Clinton, or Perot.

As it happens, such a series of models are effectively equivalent to the MNL we’ve talked
about so far. We’ll go into this at greater length in a few weeks, when we discuss the
“independence of irrelevant alternatives” assumption (and models that relax it). For now,
just recognize that the J − 1 sets of estimates MNL yields are actually quite mathematically
similar – and will thus give similar substantive inferences – to estimating J − 1 separate
binary logits.
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Conditional Logit

You should understand one key thing about the conditional logit model:

It is exactly the same as the multinomial logit model. Period.

This means that:

• The formulas are very similar-looking, and can be shown to be mathematically equiv-
alent (e.g. Long, Maddala),

• Estimation is done exactly the same way,

• You will get identical results from MNL and CL if you run the same model,

• All of the ways in which you can interpret a MNL model, you can also interpret a
conditional logit.

That said, it turns out that the CL is actually more flexible than the MNL model in most
circumstances. So, why the differences?

Conditional Logit: A Primer

The MNL model measures the impact of observation-specific variables on the probability of
choosing one of J discrete outcomes. In the MNL model, the data look like this:

. list caseid presvote partyid

+-----------------------------+

| caseid presvote partyid |

|-----------------------------|

1. | 3001 1 6 |

2. | 3002 1 7 |

3. | 3003 1 7 |

4. | 3005 2 6 |

5. | 3006 2 2 |

...

etc. This is familiar: there is one line of data per observation, and covariates (that is, Xs)
vary across individuals/cases, but not across choices. Estimation yields separate effects for
each variable on each choice.

But what if we have some variable (say, Zij) that varies across choices, or across both obser-
vations and choices? For example, in our study of the 1992 Presidential election, we might
want to incorporate some measure of the voter’s evaluation of each candidate, which will
vary across choices/candidates. Here, these are the “feeling thermometer” scores we talked
about before (designated BushFT, ClintonFT, and PerotFT):
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. list caseid presvote partyid BushFT ClintonFT PerotFT

+-----------------------------------------------------------+

| caseid presvote partyid BushFT Clinto~T PerotFT |

|-----------------------------------------------------------|

1. | 3001 1 6 85 30 0 |

2. | 3002 1 7 100 0 0 |

3. | 3003 1 7 85 30 60 |

4. | 3005 2 6 40 60 60 |

5. | 3006 2 2 30 70 50 |

...

The conditional logit (“CL”) model allows us to estimate the effect of such choice-specific
variables on the probability of choosing a particular alternative. To do this, we need to
restructure the data into what we Stata calls “long” format...

. expand 3

(2946 observations created)

. sort caseid

. quietly by caseid : gen candid=_n

. gen vote=0

. replace vote=1 if candid==presvote

(1473 real changes made)

. gen FT=BushFT if candid==1

(2946 missing values generated)

. replace FT=ClintonFT if candid==2

(1473 real changes made)

. replace FT=PerotFT if candid==3

(1473 real changes made)

. list caseid presvote candid vote FT

+-----------------------------------------+

| caseid presvote candid vote FT |

|-----------------------------------------|

1. | 3001 1 1 1 85 |
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2. | 3001 1 2 0 30 |

3. | 3001 1 3 0 0 |

4. | 3002 1 1 1 100 |

5. | 3002 1 2 0 0 |

|-----------------------------------------|

6. | 3002 1 3 0 0 |

...

etc. Note that:

• caseid still indexes the observation (i.e., survey respondent).

• candid indexes the (possible) choice: 1 (Bush), 2 (Clinton) or 3 (Perot).

• presvote is the same as before, but

• vote is a dummy variable, equaling 1 if that observation (respondent) chose (voted
for) that alternative (candidate), and 0 otherwise.

• FT is that respondent’s “feeling thermometer” score for that candidate; note that,
unlike (say) the partyid variable, FT changes across alternatives.

The conditional logit estimates a model with the basic probability function:

Pr(Yij = j) =
exp(Zijγ)∑J
j=1 exp(Zijγ)

(6)

where Zij is a vector of independent variables that varies across both observations i and
choice alternatives j, and γ is a k × 1 vector of coefficients to be estimated.

Note a couple things:

• Because the Zs vary across both observations and alternatives, we assume that the
effect of a change in Z on the probability of choosing a particular alternative is constant
across alternatives.

• Hence, we only estimate k parameters (not (J − 1)k, as in the MNL model).

So, the conditional logit model is useful when we want to estimate the impact of alternative-
or choice-specific variables on a polychotomous dependent variable. E.g.:

• Choices of transportation alternatives, according to how long each alternative takes,
or

• Choosing political candidates on the basis of where each respondent places that can-
didate ideologically, relative to him or her; or “feeling thermometers”...

Unsurprisingly, the estimation results look a fair bit like that for a binary logit:
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. clogit vote FT, group(caseid)

Conditional (fixed-effects) logistic regression Number of obs = 4419

LR chi2(1) = 1600.58

Prob > chi2 = 0.0000

Log likelihood = -817.96837 Pseudo R2 = 0.4945

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

FT | .0766544 .0031035 24.70 0.000 .0705716 .0827372

------------------------------------------------------------------------------

. logit vote FT

Logistic regression Number of obs = 4419

LR chi2(1) = 1777.33

Prob > chi2 = 0.0000

Log likelihood = -1924.0926 Pseudo R2 = 0.3159

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

FT | .0744263 .0024393 30.51 0.000 .0696453 .0792073

_cons | -5.00402 .1566234 -31.95 0.000 -5.310997 -4.697044

------------------------------------------------------------------------------

Modeling Observation- and Choice-Specific Effects

Question: What happens if we want to estimate joint effects of variables which are constant
across choices (e.g. demographic effects) and those which vary across alternatives (e.g.
candidate distance)?

• Suppose we think, say, that both party identification and “feelings” affect candidate
choice, or

• that a Congressperson’s decision to run for reelection, or seek some higher office, de-
pends on both individual factors (e.g. his/her age) and the expected likelihood of
winning in each case (which varies by the office he’s aspiring to, as well as by candi-
date).

The simplest kind of alternative-specific effect is simply a fixed effect...

• The CL model in the form given above doesn’t include a constant term...

• We might (probably would) expect some alternatives to be more or less likely than
others, just in general...
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• So, we can include indicator variables for each possible alternative (a la “fixed effects”
for each alternative).

In fact, we can then use these fixed effects to “trick” the CL into estimating a model with
independent variables which do not vary across alternatives. To understand why this is,
think about the notion of an interaction term with a dummy variable...

• Term allows the effect of some variable to have a different effect on the dependent
variable for each of two groups.

• E.g. ideology might have a different effect on judicial voting for activist judges than it
does for restraintists.

• Here, we can use this idea:

◦ The interaction of an observation-specific variable with an alternative-specific
constant allows the observation-specific variable’s effect to be different for that
alternative than for the others.

◦ This is how we can get the CL model to estimate effects for observation-specific
variables

It turns out that, if we do this, its possible (in fact, easy) to get results identical to those
you’d get from running a MNL model...

MNL and CL: An Example

Returning to our 1992 election data, we’ll start by replicating the original multinomial logit
model. Note that, because we now have three lines of data for each observation, we estimate
the model only for those lines of data for which candid==1 (we could have used candid==2

or 3 and the results would be the same):

. mlogit presvote partyid if candid==1, baseoutcome(1)

Multinomial logistic regression Number of obs = 1473

LR chi2(2) = 891.93

Prob > chi2 = 0.0000

Log likelihood = -1083.4749 Pseudo R2 = 0.2916

------------------------------------------------------------------------------

presvote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

2 |

partyid | -1.163168 .0545618 -21.32 0.000 -1.270107 -1.056229

_cons | 4.842495 .2373171 20.41 0.000 4.377362 5.307628

-------------+----------------------------------------------------------------
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3 |

partyid | -.4826514 .0475563 -10.15 0.000 -.57586 -.3894427

_cons | 1.815236 .245572 7.39 0.000 1.333923 2.296548

------------------------------------------------------------------------------

(presvote==1 is the base outcome)

As we noted before, partyid has a negative, significant effects on the probabilities of choosing
Clinton or Perot (versus Bush). Similarly, if we wanted to know the effect of FT on choosing
each of the various alternatives, we’d use -clogit-:

. clogit vote FT, group(caseid)

Conditional (fixed-effects) logistic regression Number of obs = 4419

LR chi2(1) = 1600.58

Prob > chi2 = 0.0000

Log likelihood = -817.96837 Pseudo R2 = 0.4945

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

FT | .0766544 .0031035 24.70 0.000 .0705716 .0827372

------------------------------------------------------------------------------

Here, FT has a (unsurprisingly) significant, positive impact on the probability of choosing
that candidate; as FT increases for a particular choice, the probability of its being chosen
also increases.

Of course, what we’re really interested in is often the effect of, say, FT on vote after holding
the partyid variable constant. To do this, we need to include both FT and partyid in
the same model; however, we cannot do this with the data in their current form, since the
values of partyid do not vary across alternatives (which is required by the conditional logit
specification).

The key to getting around these problems is to recognize that variables which do not vary
across alternatives must be allowed to exert a separate impact on each alternative (as they
do in the MNL model). Including separate constant terms – analogous to “fixed effects”
– for the alternatives turns out to be the key to doing this. This can be done by simply
creating indicator variables for each choice; we can then interact each of the observation-
specific covariates with those alternative-specific constants, and include both the direct and
the interactive terms in a conditional logit model:

. gen clintondummy=(candid==2)

. gen perotdummy=(candid==3)
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. gen PIDxClinton = partyid * clintondummy

. gen PIDxPerot = partyid * perotdummy

. clogit vote clintondummy perotdummy PIDxClinton PIDxPerot, group(caseid)

Conditional (fixed-effects) logistic regression Number of obs = 4419

LR chi2(4) = 1069.56

Prob > chi2 = 0.0000

Log likelihood = -1083.4749 Pseudo R2 = 0.3305

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

clintondummy | 4.842495 .2373171 20.41 0.000 4.377362 5.307628

perotdummy | 1.815236 .245572 7.39 0.000 1.333923 2.296548

PIDxClinton | -1.163168 .0545618 -21.32 0.000 -1.270107 -1.056229

PIDxPerot | -.4826514 .0475563 -10.15 0.000 -.57586 -.3894427

------------------------------------------------------------------------------

Note that these results are exactly the same as those given by the MNL model, above; the
coefficients, standard errors, and log-likelihood are identical to the MNL. The only difference
is in the goodness-of-fit statistics.

Using alternative-specific dummies – and their interactions with observation-specific covari-
ates – thus lets us estimate a MNL model with “expanded” (CL) data. Importantly, this
also allows us to add variables that vary by choice (such as FT) to the model:

. clogit vote FT clintondummy perotdummy PIDxClinton PIDxPerot, group(caseid)

Conditional (fixed-effects) logistic regression Number of obs = 4419

LR chi2(5) = 1764.49

Prob > chi2 = 0.0000

Log likelihood = -736.0092 Pseudo R2 = 0.5452

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

FT | .0629875 .0032175 19.58 0.000 .0566813 .0692937

clintondummy | 2.812737 .2687999 10.46 0.000 2.285899 3.339576

perotdummy | .9435437 .2856252 3.30 0.001 .3837286 1.503359

PIDxClinton | -.6318723 .062255 -10.15 0.000 -.7538899 -.5098548

PIDxPerot | -.1921175 .057032 -3.37 0.001 -.3038981 -.0803369

------------------------------------------------------------------------------
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In this model, we can simultaneously estimate the influence of choice-specific and observation-
specific covariates on the probability of a particular choice.

Conditional Logit: Another Example

Maltzmann and Wahlbeck (1996) study opinion assignment in the Rehnquist Court.2 Their
data are majority opinion assignments by Chief Justice Rehnquist (N = 316, with between
4 and 9 possible choice alternatives on each, for 2213 total lines of data). Their independent
variables are Ideology, Equity, Expertise, and Efficiency, plus a CJ Dummy of the poten-
tial assignee (these are all choice-specific variables), plus Consensus, MWC, Importance and
End-of-Term variables (which are case-specific).

Their analysis points out something else: that you don’t necessarily need to interact the
observation-specific variables with dummies for the choices...

• So long as they’re interacted with some variable that varies across alternatives, the
model will be identified.

• Here, the theory (such as it is) suggested that they should interact a number of their
variables with ideology...

Next week, we’ll discuss at length how to interpret and discuss MNL and CL models.

2M&W call it a “multinomial logit” model and a “discrete choice” model, but it’s a conditional logit,
with interaction terms to take into account case-specific variables...
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