
POLI 8501
Models for Ordinal Responses II

Introduction

There are several possible ways of interpreting these models, all of which have similarities
to binary logit/probit:

• Coefficient and standard error estimates . . .

• Marginal effects/first derivatives . . .

• Predicted probabilities, and changes in them.

• Cumulative predicted probabilities.

• Odds ratios in the ordered logit model.

We’ll use the following running example: BEER!

• The data are from a rating of 69 domestic and imported beers conducted in June, 1996
by Consumer Reports magazine. Quality is coded on a four point scale:

1. Fair

2. Good

3. Very Good

4. Excellent

• Explanatory variables are:

– price per six 12 ounce servings (in dollars, E[β > 0]),

– calories per 12 ounce serving (E[β > 0]),

– an indicator for whether (= 1) or not the beer was a “craft” beer (i.e, from a
microbrewery) (E[β > 0]), and

– two indicators of flavor: a scale (0−100) of the beer’s level of bitterness (E[β < 0]),
and a similar scale of its maltiness (E[β > 0]).

.
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The data, and the basic model estimates, look like this:

. su quality price calories craftbeer bitter malty

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

quality | 69 2.536232 1.145062 1 4

price | 69 4.963188 1.446516 2.36 7.8

calories | 69 142.3478 29.90221 58 201

craftbeer | 69 .4347826 .4993602 0 1

bitter | 69 35.44203 17.99786 8 80.5

-------------+--------------------------------------------------------

malty | 69 33.13043 26.17288 5 86

. ologit quality price calories craftbeer bitter malty

Ordered logistic regression Number of obs = 69

LR chi2(5) = 27.29

Prob > chi2 = 0.0000

Log likelihood = -81.871058 Pseudo R2 = 0.1429

------------------------------------------------------------------------------

quality | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

price | -.4505038 .2933979 -1.54 0.125 -1.025553 .1245455

calories | .0467436 .0121975 3.83 0.000 .022837 .0706502

craftbeer | -1.704671 .941856 -1.81 0.070 -3.550675 .141333

bitter | -.0296914 .042417 -0.70 0.484 -.1128272 .0534444

malty | .0505279 .0245936 2.05 0.040 .0023254 .0987304

-------------+----------------------------------------------------------------

/cut1 | 2.771035 1.673818 -.5095873 6.051657

/cut2 | 4.269676 1.72483 .8890725 7.65028

/cut3 | 5.577651 1.759538 2.129021 9.026282

------------------------------------------------------------------------------

We’ll discuss, in turn, a number of different ways of analyzing/interpreting models like this.
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Signs-N-Significance

• Signs-n-significance can tell you a little about the results, BUT

• There’s also a problem with interpreting these models this way (over and above the
usual reasons not to do so) – we’ll talk about this below...

Odds Ratios

For the ordered logit, one can use an odds-ratio interpretation of the coefficients. For that
model, the change in the odds of Y being greater than j (versus being less than or equal to
j) associated with a δ-unit change in Xk is equal to exp(δβ̂k).

Happily, Stata makes getting odds ratios (along with their associated standard errors, etc.)
trivially easy:

. ologit, or

Ordered logistic regression Number of obs = 69

LR chi2(5) = 27.29

Prob > chi2 = 0.0000

Log likelihood = -81.871058 Pseudo R2 = 0.1429

------------------------------------------------------------------------------

quality | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

price | .637307 .1869845 -1.54 0.125 .358598 1.132634

calories | 1.047853 .0127812 3.83 0.000 1.0231 1.073206

craftbeer | .1818322 .1712598 -1.81 0.070 .0287053 1.151808

bitter | .970745 .0411761 -0.70 0.484 .893305 1.054898

malty | 1.051826 .0258682 2.05 0.040 1.002328 1.103769

-------------+----------------------------------------------------------------

/cut1 | 2.771035 1.673818 -.5095873 6.051657

/cut2 | 4.269676 1.72483 .8890725 7.65028

/cut3 | 5.577651 1.759538 2.129021 9.026282

------------------------------------------------------------------------------

Interpretation of these odds ratios is straightforward: the change in odds associated with a
one-unit change in Xk is exp(β̂k).

• So, in our example, for, e.g., the craftbeer variable:

◦ exp(−1.705) = 0.18

◦ Thus, the odds of being rated “Good” or better (versus “Fair”) are more than 80
percent lower for a microbrew than for a regular beer.
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◦ And, the odds of being rated “Very Good” or “Excellent” (versus “Fair” or
“Good”) are about 80 percent lower for a microbrew than for a regular beer
as well, etc.

• Similarly, for the (continuous) calories variable:

◦ The odds ratio is exp(0.047) = 1.05

◦ This means that a one-calorie increase raises the probability of being in a higher
set of categories (versus all lower ones) by about five percent.

◦ We’ll see this in terms of the predicted probabilities as well (below).

• The fact that the odds ratio is the same for all values of J is a function of the parallel
regressions assumption, which we discussed last time (and will talk a bit more about
later today...).

As was the case for binary logits, odds ratios are a nice, intuitive way of discussing the
substantive impact of your covariates. They’re probably best used “textually” – that is, as
part of the written discussion of your research findings, rather than reported in a table or
the like.

Partial Derivatives/Marginal Effects

Yet another way of looking at covariate effects is to consider the partial derivative of the
probability of any particular outcome, with respect to the covariate of interest. In these
models, this is:

∂Pr(Y = j)

∂Xk

=
∂F (τ̂j − X̄β̂)

∂Xk

− ∂F (τ̂j−1 − X̄β̂)

∂Xk

= β̂k[f(τ̂j−1 − X̄β̂) − f(τ̂j − X̄β̂)] (1)

So, for (e.g.) an ordered probit, (1) is:

β̂k[φ(τ̂j−1 − X̄β̂) − φ(τ̂j − X̄β̂)]

That is, the height of the density f(·) at τ̂j−1 − X̄β̂ minus its height at τ̂j − X̄β̂ (see Figure
1). For an ordered logit, we’d substitute λ (the standard logistic density) for φ in (1).

Now, notice a few things about Equation (1):

• Remember that φ (or λ) is the density of the error terms around the regression line for
the hypothetical Y ∗.

• The effect of a change in Xk is to shift the bell-curve up or down the axis, while the
positions of the “cut points” (τ1...τj−1) stay the same...
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Figure 1: Marginal Effects of Xk on Pr(Y = j)

• Assume for the moment that we’re holding X̄β̂ = 0. For the curve on the left, all
the derivatives have the “correct” sign – that is, the same as the estimated coefficient.
That is, since f(τ1) − f(τ2) > 0, then

◦ Variables with positive coefficients will have positive derivatives...

◦ The reverse will be true for Xk with β̂k < 0.

• The opposite is true for the curve on the right, where, because τ1 < τ2, the sign of the
partial derivative will be “flipped” relative to that of β̂k.

• For the curve in the middle, the fact that the density is essentially equal at τ1 and τ2

means that the marginal will be very close to zero...

All this means that the size of the mass of probability in the middle category first gets
larger, then smaller as we increase Xk (for a positive β̂k). Mathematically, this means that
the change in the probability of getting a “middle category,” as a function of X, is somewhat
indeterminate...

• E.g., (assuming β̂k > 0), the probability of Y = 1 clearly decreases in Xk.

• Similarly, Pr(Y = 3) also increases in Xk.

• But Pr(Y = 2) may be going either up or down, relative to the other categories...
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This last bit will be true for any “middle” ordinal category, in which the PDF “turns over”
for that range of values of Xk. As you can imagine, this fact has implications for the predicted
probabilities as well.

Getting Marginal Effects

While computing Eq. (1) isn’t all that hard, Stata users can also use the -mfx- command to
generate partial derivatives:

. mfx, predict(p outcome(1))

Marginal effects after ologit

y = Pr(quality==1) (predict, p outcome(1))

= .17837356

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

price | .0660242 .04343 1.52 0.128 -.019105 .151153 4.96319

calories | -.0068506 .00209 -3.27 0.001 -.010954 -.002747 142.348

craftb~r*| .2688865 .15549 1.73 0.084 -.035867 .57364 .434783

bitter | .0043515 .00629 0.69 0.489 -.007971 .016674 35.442

malty | -.0074052 .00368 -2.01 0.044 -.014626 -.000185 33.1304

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx, predict(p outcome(2))

Marginal effects after ologit

y = Pr(quality==2) (predict, p outcome(2))

= .31443584

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

price | .0465784 .03534 1.32 0.188 -.022689 .115846 4.96319

calories | -.0048329 .00215 -2.25 0.024 -.00904 -.000625 142.348

craftb~r*| .1326553 .07074 1.88 0.061 -.006 .27131 .434783

bitter | .0030699 .00449 0.68 0.494 -.005737 .011876 35.442

malty | -.0052242 .00325 -1.61 0.108 -.011587 .001139 33.1304

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx, predict(p outcome(3))
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Marginal effects after ologit

y = Pr(quality==3) (predict, p outcome(3))

= .28950597

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

price | -.0358828 .0276 -1.30 0.194 -.089977 .018211 4.96319

calories | .0037231 .00189 1.96 0.049 9.1e-06 .007437 142.348

craftb~r*| -.1288796 .07264 -1.77 0.076 -.271256 .013497 .434783

bitter | -.0023649 .00357 -0.66 0.508 -.009361 .004631 35.442

malty | .0040246 .0026 1.55 0.121 -.001068 .009117 33.1304

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx, predict(p outcome(4))

Marginal effects after ologit

y = Pr(quality==4) (predict, p outcome(4))

= .21768463

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

price | -.0767199 .05092 -1.51 0.132 -.176517 .023077 4.96319

calories | .0079603 .00217 3.67 0.000 .003709 .012212 142.348

craftb~r*| -.2726622 .14492 -1.88 0.060 -.556694 .011369 .434783

bitter | -.0050564 .0072 -0.70 0.482 -.019165 .009052 35.442

malty | .0086048 .00428 2.01 0.045 .000211 .016999 33.1304

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

Note that here I’ve not specified at(...), which means that, by default, Stata will set the
values of the covariates to their means; one can change this relatively easily.

One can think of the marginal effects as the “slope” of the (nonlinear) regression line for
that covariate on the probability of that outcome, assessed while holding constant the values
of the variables in the model. So, consider the malty variable:

• At mean levels of X, the change in Pr(Fair) associated with an increase in malty is
negative, and statistically differentiable from zero.

• The corresponding “slope” of malty on Pr(Good) is also negative, but not differentiable
from zero.

• The effect of malty on Pr(Very Good) is positive, but “nonsignificant,” and
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• That effect vis-à-vis Pr(Excellent) is positive and “significant.”

One can do a similar interpretation for each of the other variables. Note also that, by default,
Stata calculates marginal effects for dummy variables as the discrete change in the probability
for a one-unit change in that covariate; it notes this (with respect to the craftbeer variable)
in the output of mfx.

Predicted Probabilities

Recall that

̂Pr(Yi = j|X) = F (τ̂j − X̄iβ̂) − F (τ̂j−1 − X̄iβ̂) (2)

This is the basic formula from which we calculate predicted probabilities. As in the binary
case, there are lots of things we can do with these, and lots of ways to do them...

• Calculate predicted probabilities that Y = {1, 2, 3, etc.}.

• Simply do it “by hand”, or

• (better) let Stata do it for you, using -predict-, or

• use Clarify.

• Consider changes for discrete changes/dummy covariates...

• ...or changes over ranges of continuous covariates.

• Can also plot graphs of predicted probabilities by continuous covariates...

◦ Either simple predictions (that is, ̂Pr(Y = 1)), or

◦ “Cumulative” probabilities (see below).

Let’s reconsider our beer example...

Calculating Discrete Predicted Probabilities

To get our probabilities, we just set our variables to the values we want, and then “plug them
in” to (2), above. Let’s go with means for the four continuous variables, and the median for
craftbeer.

1. Set price = 4.96, calories = 142, craftbeer = 0, bitter = 35.4, and malty = 33.1.
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2. This gives us an “index value” of:

K∑
k=1

X̄kβ̂k = −0.45 × 4.96 + 0.047 × 142 − 1.70 × 0 − 0.03 × 35.4 + 0.05 × 33.1

= −2.23 + 6.67 − 0 − 1.06 + 1.66

= 5.04.

3. From this, we just calculate the probabilities of each ordered outcome, according to
Equation (2):

• Pr(Y = 1) = Λ(2.77 − 5.04) − 0 = Λ(−2.27) = exp(−2.27)
1+exp(−2.27)

= 0.09.

• Pr(Y = 2) = Λ(4.27−5.04)−Λ(2.77−5.04) = Λ(−0.77)−Λ(−2.27) = exp(−0.77)
1+exp(−0.77)

−
exp(−2.27)

1+exp(−2.27)
= 0.32 − 0.09 = 0.23.

• Pr(Y = 3) = Λ(5.58−5.04)−Λ(4.27−5.04) = Λ(0.54)−Λ(−0.77) = exp(0.54)
1+exp(0.54)

−
exp(−0.77)

1+exp(−0.77)
= 0.63 − 0.32 = 0.31.

• Pr(Y = 4) = 1−Λ(5.58− 5.04) = 1−Λ(0.54) = 1− exp(0.54)
1+exp(0.54)

= 1− 0.63 = 0.37.

Note that the probabilities (naturally) sum to one. Also, if we’d done an ordered probit,
we’d use a standard normal CDF (that is, Φ) rather than Λ.

Changes in Predicted Probabilities

To get changes in probabilities associated with changes in binary Xs, we just calculate
the predicted probability for each value {0, 1} and take the difference. So, think about
microbrews...

1. The new index value (holding all other variables at their means, but changing craftbeer
to one) is just −0.45× 4.96+0.047× 142− 1.70× 1− 0.03× 35.4+0.05× 33.1 = 3.34.

2. The corresponding respective probabilities are:

• Pr(Y = 1) = Λ(2.77 − 3.34) − 0 = 0.36.

• Pr(Y = 2) = Λ(4.27 − 3.34) − Λ(2.77 − 3.34) = 0.72 − 0.36 = 0.36.

• Pr(Y = 3) = Λ(5.58 − 3.34) − Λ(4.27 − 3.34) = 0.90 − 0.72 = 0.18.

• Pr(Y = 4) = 1 − 0.90 = 0.10.

3. So, the changes in predicted probabilities as one goes from a “regular” beer to a
microbrew are:
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Outcome Change in Probability
∆Pr(Fair) 0.27
∆Pr(Good) 0.13

∆Pr(Very Good) -0.13
∆Pr(Excellent) -0.27

We can do the same thing for a discrete-valued change in a continuous variable. In general,
however, changes in probabilities associated with changes in continuous covariates are best
illustrated graphically, rather than in table form.

Graphing Continuous Predicted Probabilities

Plots of Predicted Probabilities

Tables of changes are fine, but for continuous covariates, graphs are even better. Consider
the effect of changes in calories.

1. Start by generating another “dummy” dataset, where calories varies across its range
of actual values and all other variables are held constant at their means:

. clear

. set obs 141

obs was 0, now 141

. gen calories=_n+59

. gen price=4.96

. gen craftbeer=0

. gen bitter=35.44

. gen malty=33.13

2. Then, predict from the estimation data to the simulated data:

. save beersim

file beersim.dta saved

. use beerdata.dta

. ologit quality price calories craftbeer bitter malty

(output omitted)

. use beersim.dta

. predict ProbFair ProbGood ProbVG ProbExc

(option pr assumed; predicted probabilities)
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3. Finally, we can graph these predictions:2

Figure 2: Changes in Pr(Y = j) as a Function of calories

Note several things about Figure 2...

• It looks like the “pieces” of a PDF (which, in fact, it is) that’s been “cut up.”

• calories’ effects on each of the categories reflect the discussion above...

◦ The probability of a “Fair” rating decreases with calories (from 0.83 to 0.01).

◦ The probability of an “Excellent” rating increases from 0.01 to 0.90.

◦ The probability of a “Good” rating first increases (from 0.13 to 0.36), reaching
its maximum at about 110 calories, and then decreases to 0.02.

◦ Similarly, the probability of a “Very Good” rating first increases (from 0.03 to
0.32), reaching its maximum at about 140 calories, and then decreases to 0.07.

· These last two result reflects that ambiguous first derivative for the “middle”
categories.

· They also make substantive sense: at one level, you expect more caloric beers
to be more likely to be “good;” but at much higher calorie levels, you’d be
even more likely to think that they’d be “very good” or “excellent” (and so,
correspondingly less likely to be “good”).

2Note: Stata syntax for the plots shown in this section is available at the end of these notes.
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Cumulative predicted probabilities

The cumulative probabilities are just the predicted probabilities “stacked” on top of one an-
other. So, Pr(Fair) is just the predicted Pr(Fair); Pr(Fair or Good) is Pr(Fair) + Pr(Good);
Pr(Fair or Good or Very Good) is Pr(Fair) + Pr(Good) + Pr(Very Good), and
Pr(Fair or Good or Very Good or Excellent) is 1.0. We can generate and plot these, as fol-
lows:

. gen CDzero=0

. gen CDFair=ProbFair

. gen CDGood=ProbFair + ProbGood

. gen CDVG=ProbFair + ProbGood + ProbVG

. gen CDExcellent=ProbFair + ProbGood + ProbVG + ProbExc

Figure 3: Changes in Cumulative Probabilities, as a Function of calories
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Figure 3 gives you the same information as the previous chart, but some people find the
latter more intuitive. In particular, one can think of the area between the various curves
as the probabilities of each of the outcomes. So, its very clear what happens as calories

increases – first your chance of being rated “good” goes up, then (as calories gets even
higher) your chances of being rated “very good” (and then “excellent”) go up markedly.

Other Approaches

Beyond these, there are several other tools that can help you interpret the results of ordered-
response models. All of these are for Stata users; the SAS, R, and other software users out
there will have to do their own digging around.

• Both ologit and oprobit support a bunch of postestimation commands. We discussed
mfx and predict, but other useful ones include fitstat, lincom, nlcom, and the
various flavors of test. Check them out.

• As with binary-response models, King et al.’s Clarify program can provide useful post-
estimation information, particularly in the form of changes in predicted probabilities
and their associated measures of uncertainty. That software works for ordinal models
more-or-less like it does for binary-response models.

• Scott Long and Jeremy Freese have written a suite of commands under the general
heading spost. They automate several useful things, including predicted probabilities
and the like. We’ll be using one of these, brant, in a few minutes. Check them out.
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Parallel Regressions

We said last time that the parallel regressions assumption can be an important one, both
statistically and substantively. Let’s revisit our model:

. ologit quality price calories craftbeer bitter malty

Ordered logistic regression Number of obs = 69

LR chi2(5) = 27.29

Prob > chi2 = 0.0000

Log likelihood = -81.871058 Pseudo R2 = 0.1429

------------------------------------------------------------------------------

quality | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

price | -.4505038 .2933979 -1.54 0.125 -1.025553 .1245455

calories | .0467436 .0121975 3.83 0.000 .022837 .0706502

craftbeer | -1.704671 .941856 -1.81 0.070 -3.550675 .141333

bitter | -.0296914 .042417 -0.70 0.484 -.1128272 .0534444

malty | .0505279 .0245936 2.05 0.040 .0023254 .0987304

-------------+----------------------------------------------------------------

/cut1 | 2.771035 1.673818 -.5095873 6.051657

/cut2 | 4.269676 1.72483 .8890725 7.65028

/cut3 | 5.577651 1.759538 2.129021 9.026282

------------------------------------------------------------------------------

As we noted previously, the fact that we estimate only one parameter (β) for each covariate
implies a restriction: that

∂Pr(Yi = j)

∂X
=

∂Pr(Yi = j′)

∂X
∀ j 6= j′ (3)

This is equivalent to a restriction on the βs; i.e., that all the βks for a given covariate Xk

are equal across the J − 1 categories. Recall that the basic probability statement for the
standard ordered regression model we’ve been talking about is:

Pr(Yi = j|X, β) = F (τj −Xiβ) − F (τj−1 −Xiβ) (4)

We can imagine a generalization:

Pr(Yi = j|X, β) = F (τj −Xiβj) − F (τj−1 −Xiβj) (5)

This “generalized” ordered regression model estimates a separate vector of coefficients βj

for each of the J − 1 categories of the response variable. One way of thinking about this
is to imagine that we divide up the J categories into J − 1 dummy variables, and estimate
separate regressions of X on each. Consider our beer example. We can estimate a model of
whether (=1) or not (=0) a beer was rated “Good” or better (with “Fair” being the zero
category):
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. gen goodplus=(quality>1)

. logit goodplus price calories craftbeer bitter malty

Logistic regression Number of obs = 69

LR chi2(5) = 15.40

Prob > chi2 = 0.0088

Log likelihood = -30.822655 Pseudo R2 = 0.1999

------------------------------------------------------------------------------

goodplus | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

price | -.1216719 .4144182 -0.29 0.769 -.9339166 .6905727

calories | .0471238 .0148004 3.18 0.001 .0181156 .076132

craftbeer | .32331 1.375893 0.23 0.814 -2.373391 3.020011

bitter | -.0768229 .0562343 -1.37 0.172 -.18704 .0333943

malty | .0222671 .0332503 0.67 0.503 -.0429023 .0874365

_cons | -2.893688 1.997235 -1.45 0.147 -6.808197 1.020821

------------------------------------------------------------------------------

If we were to do this for each of the remaining categories – omitting one as the “baseline”
– we’d have a set of three binary-response regression models: one estimating the effect of X
on Pr(Y > 1), one for Pr(Y > 2), and a third for Pr(Y > 3). With these results, we could:

1. “Eyeball” the coefficients, and see if they are more-or-less the same across the various
parts of the ordinal variable.

2. Calculate a likelihood ratio test, by simply summing the separate (log)-likelihoods of
the J − 1 binary models, subtracting the log-likelihood of the ordered model from that
value, and multiplying by -2; that statistic is ∼ χ2

K(J−2), and amounts to a test for
whether, in the aggregate, the parallel regressions assumption holds or not.

3. Long also gives formulas for Lagrangian multiplier and Wald tests for the global parallel
regression assumption (1997, pp. 142-44).

4. The “Brant test”3 is an automated version of the Wald test mentioned in the Long
book; it also reports the results for variable-specific tests for parallel regressions:4

3Brant, R. 1990. “Assessing Proportionality in the Proportional Odds Model for Ordinal Logistic Re-
gression.” Biometrics 46:1171-78.

4The brant command is part of the spost suite of commands; you’ll have to install those to use brant.
Type findit spost for help on this, if necessary.
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. brant, detail

Estimated coefficients from j-1 binary regressions

y>1 y>2 y>3

price -.12167192 -.66679785 -.94164044

calories .04712378 .05587705 .0534708

craftbeer .32330996 -3.1416146 -2.8559674

bitter -.07682288 -.02821661 .04355989

malty .02226708 .0686074 .05110993

_cons -2.8936879 -4.6327928 -6.4437228

Brant Test of Parallel Regression Assumption

Variable | chi2 p>chi2 df

-------------+--------------------------

All | 13.61 0.191 10

-------------+--------------------------

price | 2.53 0.283 2

calories | 0.22 0.894 2

craftbeer | 5.59 0.061 2

bitter | 3.46 0.178 2

malty | 1.99 0.369 2

----------------------------------------

A significant test statistic provides evidence that the parallel

regression assumption has been violated.

The interpretation of this is straightforward:

• The initial table are the estimated β̂s from the series of J−1 implicit binary regressions;
note, for example, that the β̂s for the y>1 category are identical to those in the binary
logit of goodplus, above.

• The test then calculates both variable-specific and global Wald tests for the restriction
in Eq. (4), and reports the test statistics and P -values.

◦ Significant values are evidence that the βs are non-constant across different cat-
egories.

◦ Non-significant test values suggest that the parallel regressions assumption is a
reasonable one.
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“Generalized” Ordered Logit

Of course, given the potential for violation of the parallel regressions assumption, one might
ask “why not just estimate a model like (5)?” – i.e., one that allows each β to be different
for each category of Y . In fact, such a “generalized” ordered logit model is easy to estimate:

. gologit2 quality price calories craftbeer bitter malty

Generalized Ordered Logit Estimates Number of obs = 69

LR chi2(15) = 45.06

Prob > chi2 = 0.0001

Log likelihood = -72.986987 Pseudo R2 = 0.2359

------------------------------------------------------------------------------

quality | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1 |

price | -.0835826 .3804222 -0.22 0.826 -.8291963 .6620312

calories | .0467468 .0149238 3.13 0.002 .0174966 .0759969

craftbeer | .7262383 1.454381 0.50 0.618 -2.124295 3.576772

bitter | -.0928178 .0553309 -1.68 0.093 -.2012644 .0156288

malty | .02204 .0355225 0.62 0.535 -.0475829 .0916628

_cons | -2.679875 1.986657 -1.35 0.177 -6.573651 1.213901

-------------+----------------------------------------------------------------

2 |

price | -.2712559 .3807465 -0.71 0.476 -1.017505 .4749936

calories | .0602319 .0205639 2.93 0.003 .0199273 .1005364

craftbeer | -2.944466 1.415597 -2.08 0.038 -5.718986 -.1699462

bitter | -.0481728 .0627195 -0.77 0.442 -.1711006 .0747551

malty | .059636 .0427353 1.40 0.163 -.0241237 .1433957

_cons | -6.32298 2.977815 -2.12 0.034 -12.15939 -.4865707

-------------+----------------------------------------------------------------

3 |

price | -1.394406 .5978274 -2.33 0.020 -2.566126 -.2226854

calories | .0831619 .0377862 2.20 0.028 .0091024 .1572214

craftbeer | -3.363712 1.77395 -1.90 0.058 -6.84059 .1131653

bitter | .1537367 .0958194 1.60 0.109 -.0340658 .3415392

malty | .006209 .0496373 0.13 0.900 -.0910783 .1034962

_cons | -10.81515 5.361544 -2.02 0.044 -21.32359 -.3067199

------------------------------------------------------------------------------
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This model simply relaxes the restriction in (4), and estimates the distinct βs for each ordi-
nal category. Interpretation, while somewhat more complicated, is identical to the standard
ordered logit model, with the exception that odds ratios are now calculated separately for
each category of Y .

A “Partially” Generalized Model

While the model in Equation (5) is certainly flexible, it also seems awfully inefficient. Con-
sider the calories variable. By simply looking at the estimated βs, we can see that
calories’ effect seems to be more-or-less the same across the three regressions / categories.
What might be useful, then, would be a model that was “partially” generalized. Suppose in
X there are two kinds of variables:

1. For one subset of X – call it X′ – the effects of X′ on Pr(Y = j) are parallel; that is,
those variables’ effects meet the parallel regression assumption.

2. For another subset of X – call this one X′′ – the effects are not parallel; those variable
violate the parallel regression assumption.

Our ideal model, then would look like:

Pr(Yi = j|X, β) = F (τj −X′
iβ −X′′

i βj) − F (τj−1 −X′
iβ −X′′

i βj) (6)

This model estimates separate, category-specific βs for those variables that “need” them
(that is, for those whose effects are not parallel), and estimates a single β for variables whose
effects meet the parallel regression assumption.

Of course, one challenge is knowing which variables are in X′ and which are in X′′. We can
use the Brant test to get an assessment of this; but it’s also possible to “autofit” this model,
using gologit2:
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. gologit2 quality price calories craftbeer bitter malty, autofit

------------------------------------------------------------------------------
Testing parallel-lines assumption using the .05 level of significance...

Step 1: Constraints for parallel lines imposed for calories (P Value = 0.6283)
Step 2: Constraints for parallel lines imposed for malty (P Value = 0.5639)
Step 3: Constraints for parallel lines imposed for price (P Value = 0.1376)
Step 4: Constraints for parallel lines imposed for craftbeer (P Value = 0.0880)
Step 5: Constraints for parallel lines are not imposed for

bitter (P Value = 0.04536)

Wald test of parallel-lines assumption for the final model:

( 1) [1]calories - [2]calories = 0
( 2) [1]malty - [2]malty = 0
( 3) [1]price - [2]price = 0
( 4) [1]craftbeer - [2]craftbeer = 0
( 5) [1]calories - [3]calories = 0
( 6) [1]malty - [3]malty = 0
( 7) [1]price - [3]price = 0
( 8) [1]craftbeer - [3]craftbeer = 0

chi2( 8) = 9.88
Prob > chi2 = 0.2736

An insignificant test statistic indicates that the final model
does not violate the proportional odds/parallel-lines assumption

------------------------------------------------------------------------------
Generalized Ordered Logit Estimates Number of obs = 69

Wald chi2(7) = 24.73
Prob > chi2 = 0.0008

Log likelihood = -79.280813 Pseudo R2 = 0.1700

( 1) [1]calories - [2]calories = 0
( 2) [1]malty - [2]malty = 0
( 3) [1]price - [2]price = 0
( 4) [1]craftbeer - [2]craftbeer = 0
( 5) [2]calories - [3]calories = 0
( 6) [2]malty - [3]malty = 0
( 7) [2]price - [3]price = 0
( 8) [2]craftbeer - [3]craftbeer = 0
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------------------------------------------------------------------------------
quality | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1 |

price | -.3974502 .2963908 -1.34 0.180 -.9783655 .1834652
calories | .0527095 .013121 4.02 0.000 .0269927 .0784263
craftbeer | -1.672272 .9492114 -1.76 0.078 -3.532692 .1881483

bitter | -.0499689 .0444101 -1.13 0.261 -.1370111 .0370733
malty | .0429082 .0245989 1.74 0.081 -.0053049 .0911212
_cons | -2.889296 1.680023 -1.72 0.085 -6.182081 .4034878

-------------+----------------------------------------------------------------
2 |

price | -.3974502 .2963908 -1.34 0.180 -.9783655 .1834652
calories | .0527095 .013121 4.02 0.000 .0269927 .0784263
craftbeer | -1.672272 .9492114 -1.76 0.078 -3.532692 .1881483

bitter | -.0388347 .0442736 -0.88 0.380 -.1256092 .0479399
malty | .0429082 .0245989 1.74 0.081 -.0053049 .0911212
_cons | -4.833708 1.889462 -2.56 0.011 -8.536985 -1.130431

-------------+----------------------------------------------------------------
3 |

price | -.3974502 .2963908 -1.34 0.180 -.9783655 .1834652
calories | .0527095 .013121 4.02 0.000 .0269927 .0784263
craftbeer | -1.672272 .9492114 -1.76 0.078 -3.532692 .1881483

bitter | -.00471 .0441368 -0.11 0.915 -.0912166 .0817966
malty | .0429082 .0245989 1.74 0.081 -.0053049 .0911212
_cons | -7.4055 2.038188 -3.63 0.000 -11.40027 -3.410725

------------------------------------------------------------------------------

The model starts by conducting a series of tests for whether or not each variable violates
the parallel regression assumption. If it does, then it is left in the model unconstrained; if
not, the equality constraint is imposed.

Here, the only variable that violates the proportional regression assumption is that for
bitterness. All other coefficients are constrained to be the same across the four categories,
as in a standard ordered logit.
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Other Variants on Ordered Response Models

We’ll wrap up with a very quick discussion of two models that generalize the standard or-
dered logit/probit, in straightforward ways.

Heteroscedastic Ordered Probit

Alvarez and Brehm (1998), pulling from Greene (2002) and other work, extend the het-
eroscedastic probit model to the case of multiple ordered outcomes. The Appendix of their
article lists the details; suffice it to say that the log-likelihood is:

ln L =
N∑

i=1

J∑
j=1

δij ln

[
Φ

(
τj −Xiβ

exp(Ziγ)

)
− Φ

(
τj−1 −Xiβ

exp(Ziγ)

)]
(7)

where the δijs are indicator variables as before, and Ziγ are the variables believed to influ-
ence the variability of the latent variable Y ∗. The intuition of this model is largely the same
as in the binary case; we won’t spend a bunch of time on it.

Variable “Cut-Points”

In a paper in Political Analysis, Mitch Sanders extends the ordered models even further,
by allowing for both heteroscedasticity and for the “cut points” τ to vary across different
individuals. The substantive issue is vote choice (or non-choice / abstention). Tinkering
with his notation a bit,5, we have a set of variables Xiβ that influence the mean of Y ∗,
another set Ziγ that affect its variance, and a third set of variables (I’ll call them Wiη) that
influence where the “cut-points” are (that is, each individuals’ “decision threholds”).

The model is a three-category ordinal response model; the basic probability statements are:

Pr(Yi = 1) = 1 − Φ

(
Wiη −Xiβ

exp(Ziγ)

)
, (8)

Pr(Yi = 2) = Φ

(
Wiη −Xiβ

exp(Ziγ)

)
− Φ

(
−Wiη −Xiβ

exp(Ziγ)

)
, and (9)

Pr(Yi = 3) = Φ

(
−Wiη −Xiβ

exp(Ziγ)

)
. (10)

5Mitch calls the variables that influence the “cut-points” Ziγ, but for consistency I’ll leave those as the
variance terms.
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The log-likelihood then just becomes:

ln L =
N∑

i=1

J∑
j=1

δij ln

[
Φ

(
Wiη −Xiβ

exp(Ziγ)

)
− Φ

(
−Wiη −Xiβ

exp(Ziγ)

)]
(11)

where δij is again defined as before. Note a few things about this model:

• The model has two “cut points,” symmetrically located at Wiη and −Wiη; scaling
the parameters/variables thus changes the distance between them.

• This latter point is how the model is identified; changes in Wiη are constrained to
affect the cut-points in a particular way, making them differentiable from the effects
of Xiβ.

Sanders does this in GAUSS, though in theory there’s no reason one couldn’t build a model
like this in Stata/S-Plus/R/BUGS/whatever (and, in fact, there is now a way to estimate
such a model in Stata ; drop me an e-mail if you think it might be useful for your work).

22



Appendix: Stata graph Commands for Figures

Note: These were – like all the figures you see in these notes – generated using the Graphics
pull-down menu in Stata 9.2; the commands here are just cut-and-pasted from the Results

window.

Figure 2

. twoway (line ProbFair calories, lcolor(black) lpattern(solid) lwidth(medthick))

(line ProbGood calories, lcolor(cranberry) lpattern(shortdash) lwidth(medthick))

(line ProbVG calories, lcolor(dknavy) lpattern(longdash) lwidth(medthick))

(line ProbExc calories, lcolor(dkgreen) lpattern(longdash_shortdash)

lwidth(medthick)), ytitle(Predicted Probabilities) xtitle(Calories per Serving,

size(medsmall)) legend(cols(4) order(1 "Pr(Fair)" 2 "Pr(Good)" 3 "Pr(Very

Good)" 4 "Pr(Excellent)") size(small)) graphregion(margin(vsmall))

Figure 3

. twoway (rarea CDFair CDzero calories, lcolor(black) lpattern(solid) fcolor(white))

(rarea CDGood CDFair calories, lcolor(black) lpattern(solid) fcolor(gs13)) (rarea

CDVG CDGood calories, lcolor(black) lpattern(solid) fcolor(gs7)) (rarea CDExcellent

CDVG calories, lcolor(black) lpattern(solid) fcolor(gs2)), ytitle(Cumulative

Probabilities) xtitle(Calories per Serving, size(medsmall)) xscale(range(60. 200.))

xlabel(60(20)200) legend(cols(4) order(1 "Pr(Fair)" 2 "Pr(Good)" 3 "Pr(Very

Good)" 4 "Pr(Excellent)") size(small)) graphregion(margin(vsmall))
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