
POLI 8501
Binary Response Models, III

Heterscedasticity and Binary Response Models

Consider a basic latent-variable probit model with N observations and k independent vari-
ables Xi:

Y ∗
i = Xiβ + ui (1)

with

ui ∼ N(0, σ2)

and

Yi =1 if Y ∗
i > 0

=0 if Y ∗
i ≤ 0

We know that

Pr(Yi = 1) =Pr(Y ∗
i > 0) (2)

=Pr(ui > −Xiβ)

=Φ(Xiβ)

Now, notice that we can divide both sides of the inequality in (2) by the same number
without changing anything, like:

Pr(Yi = 1) = Pr

(
ui
σ
> −Xi

β

σ

)
where σ is the standard deviation of the error distribution (that is,

√
V ar(ui) in (1)). This

then gives:

Pr(Yi = 1) = Φ

(
−Xi

β

σ

)
(3)

Now, when we estimate the probit model, call what we actually estimate β̂′, where β̂′ = β̂
σ

.
Again, we “get rid off” the σs by assuming that they are equal to 1 (since we assume,
generally, that σ2 = 1 in the distribution of the uis.
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In a nutshell, this is just illustrating that, because the underlying variable Y ∗ is latent, we
can’t estimate its “scale” on the basis of the data we have on Y .

Now suppose you have two groups in your data. Specifically, imagine that you’re modeling
some choice by individuals, and you have two groups: professors and graduate students.
Consider the model:

Professors (p):

Y ∗
ip = Xipβ + uip

Yip = 1 if Y ∗
ip > 0

Yip = 0 otherwise.

Graduate students (g):

Y ∗
ig = Xigβ + uig

Yig = 1 if Y ∗
ig > 0

Yig = 0 otherwise.

• Both groups give the same “weight” to the explanatory factors in making their choices;
i.e., both models have the same coefficients (βs), BUT

• Professors, being smart, always know exactly what they want. They make rational
calculations, on the basis of known variables. As a result, the variance in their error
terms is small.

• In contrast, graduate students can’t find their ass with both hands. They are unsure,
and rarely make decisions in a systematic way. There is a large-variance stochastic
component to their decision-making.

Formally:

uip ∼ N(0, σ2
p)

uig ∼ N(0, σ2
g)

σ2
g > σ2

p

That is, for these two groups, the distributions of errors u look like:

2



Figure 1: Latent error distributions for professors and graduate students.

Now, what happens if we “pool” the data, and run a single model on both grad students
and professors?

You might think that, because the coefficients are the same, we’d get “good” estimates of
them, right? WRONG...

Instead, we’d estimate:

β̂′
p =

βp

σp

β̂′
g =

βg

σg

(4)

That is, the coefficients are different for each group! Moreover, they’re related:
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β̂′
p

β̂′
g

=

βp

σp

βg

σg

=
σg

σp

• Where we’d have expected the ratio of the two coefficients to be 1.0 (since they are,
by construction, the same), instead we find that they aren’t...

BUT: What happens if σg = σp? (A: We’re back to the standard probit model).

We can see this if we consider the cumulative densities (that is, Pr(Y ∗
ip,g > u), or

∫ u

−∞ φp,g(u) ≡
Φp,g(u)) for the two groups:

Figure 2: CDFs for professors and graduate students.
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Think a little about this result.

• In the probit model, we observe only Y ∗
i > 0 or Y ∗

i ≤ 0.

• If the variance in the error term increases, then so does the variance of the probability
of interest Pr(ui > −Xiβ).

• As a result, our predictions of Pr(Yi = 1) must move towards 0.5, which in turn means
that...

• The coefficients estimated for β̂ must move towards zero. Or, put differently,

• As long as all of the “underlying” Y ∗s have the same “scale”, we can assume whatever
we want for σ2 without any problems.

BUT...

• If some subset of observations has a greater variance in their error term, the coefficients
for that group will be different from the rest...

• They’ll have to be, since if the underlying scale is, say, larger, the coefficient will have
to be larger to get the same marginal impact on the (observed) probability of Yi = 1...

Now, suppose a graduate student ignores the differences in the scales between professors and
graduate students and estimates β̂′ on the “pooled” data together...

We’d get an estimates of:

β̂′ = some sort of average of β̂′
p and β̂′

g.

The more grad students there are in the mix, the closer the estimates of β̂′ will be to β̂′
g

(and vice-versa).

The problem remains:

• The parameter coefficients are both biased and inconsistent.

• That is, the expected value of the “pooled” estimates will not be equal to the “true”
values,

• Nor will increasing the number of observations remedy this problem.

• Plus, the standard error estimates will also be all wrong...

SO...

Heterodscedasticity in probits is a bad thing...
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How Do We Deal With It?

• In the above example, we’d like to allow the variance for the two groups to be different.

• If we did this, we could estimate the parameters consistently, since we’d then be “divid-
ing” (or “rescaling”) the coefficients differently, depending on whether we were talking
about professors or grad students.

Generally, this is the approach we take.

• We allow the variance of the unobserved variable to vary according to some function
of one or more dependent variables...

• Because variance is always positive, we want the function to always be positive as
well...

So we might write:

Var(ui) ≡ σ2
i = exp(Ziγ)2 (5)

where Zi is a vector of covariates that define groups with different error variances in the
underlying (latent) variable. This means that:

s.d.(ui) ≡ σi = exp(Ziγ) (6)

In this model we assume that the latent errors are distributed N(0, [exp(Ziγ)]2). The prob-
ability function for a particular observation then equals:

Pr(Yi = 1) = Φ

[
Xiβ

exp(Ziγ)

]
(7)

This compares to that for the standard probit model, where we assume that the variance is
the same (and equal to one) for all observations:

Pr(Yi = 1) = Φ(Xiβ) (8)

This alternative, heteroscedastic probit model gives us a pretty easy log-likelihood:

lnL(β, γ|Xi,Zi) =
N∑

i=1

{
YilnΦ

[
Xiβ

exp(Ziγ)

]
+ (1− Yi)ln

[
1− Φ

(
Xiβ

exp(Ziγ)

)]}
(9)

• Maximizing this with respect to β and γ gives us our parameter estimates.

• Taking the negative of the inverse of the information matrix yields an estimate of the
variance-covariance matrix, from which we get standard errors.

Before you freak out looking at (9), stop and think for a minute...
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• What happens if all the estimated parameters in γ̂ equal zero? (A: The variance equals
exp(0) = 1, and we get the standard probit model).

• What happens if a variable in Z has a positive coefficient?

◦ As that variable increases, the variance of Y ∗ also increases, and the “impact” of
the independent variables on Pr(Yi = 1) decrease, all else equal.

◦ This ought to make some sense: As the variability of the underlying variable gets
greater, it takes a bigger change in the independent variable to push the binary
variable across the “threshold.”

This can be illustrated by looking at the marginal effects (i.e., the partial derivatives). For
the standard probit model, we have:

∂Pr(Yi = 1)

∂Xk

= φ(X̃β̂)β̂k

where the X̃ are the independent variables selected at some predetermined values. For the
heteroscedastic probit model, though, we have to consider the variance:

∂Pr(Yi = 1)

∂Xk

= φ

(
X̃β̂

exp(Z̃γ̂)

)(
β̂k

exp(Z̃γ̂)

)
where, again, we have to select values for the Zs as well as the Xs.

Interpretation

The first thing to remember is the formula for the probability that a particular observation
equals one, from above:

Pr(Yi = 1) = Φ
Xiβ

exp(Ziγ)

With this in mind, you can calculate predicted probabilities for different values of X and Z.

• This is really the best way to interpret these models

• Normal t-tests, etc. can be misleading...

A Familiar Example

Consider the NAFTA vote data again...
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. probit vote democrat pcthispc cope93

Probit estimates Number of obs = 434

LR chi2(3) = 144.48

Prob > chi2 = 0.0000

Log likelihood = -227.25328 Pseudo R2 = 0.2412

----------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------

democrat | 1.094652 .2712302 4.04 0.000 .5630503 1.626253

pcthispc | .0115188 .0047351 2.43 0.015 .0022381 .0207995

cope93 | -.0318482 .0036632 -8.69 0.000 -.0390279 -.0246686

_cons | 1.330634 .1456266 9.14 0.000 1.045211 1.616057

----------------------------------------------------------------------

Now, run a heteroscedastic probit...

. hetprob vote democrat pcthispc cope93, het(democrat pcthispc cope93)

Heteroskedastic probit model Number of obs = 434

Zero outcomes = 200

Nonzero outcomes = 234

Wald chi2(3) = 16.89

Log likelihood = -198.0597 Prob > chi2 = 0.0007

----------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+----------------------------------------------------------

vote |

democrat | .1530367 .052778 2.90 0.004 .0495937 .2564798

pcthispc | .0008621 .0003657 2.36 0.018 .0001454 .0015788

cope93 | -.007149 .0018226 -3.92 0.000 -.0107212 -.0035768

_cons | .4842633 .1160275 4.17 0.000 .2568536 .711673

-----------+----------------------------------------------------------

lnsigma2 |

democrat | -.2452263 .2145403 -1.14 0.253 -.6657176 .1752649

pcthispc | -.0234672 .0066703 -3.52 0.000 -.0365407 -.0103937

cope93 | -.0264798 .004055 -6.53 0.000 -.0344275 -.018532

----------------------------------------------------------------------

Likelihood ratio test of lnsigma2=0: chi2(3)=58.39 Prob > chi2 = 0.000

Note the differences – the variables still have the expected effects on the mean, but

• As the percentage Hispanic in a member’s district increases, their variability decreases.
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• The same is true for more pro-union members (suggesting that union membership /
support was a clear, separating signal on the NAFTA vote).

• In contrast, Democrats were neither more nor less “cross-pressured” than were Repub-
licans.

We can generate predicted probabilities by (e.g.) cope93 score, holding other variables
constant at their means/medians, using the -predict- command (just as we did for a
standard probit/logit model...):

Figure 3: Predicted Probabilities by cope93, Homoscedastic and Heteroscedastic Probit
Models (with other variables held constant at means/medians)

Note that the predictions for the heteroscedastic model are non-monotonic – this is because
the cope93 variable is in both the numerator and the denominator (that is, both X and Z)
of the model.

If you’re directly, substantively interested in the variance as well, one can plot that as
a function of a covariate too. Stata will predict the variance (standard deviation) of an
observation, either in- or out-of-sample, and you can plot this against values of a covariate:
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Figure 4: Predicted σ̂is, by cope93 (with other variables held constant at their
means/medians).

Other Considerations

Bear a few things in mind...

• When calculating predicted probabilities, marginal effects, etc. for the heteroscedastic
probit model, we have to select values for the variables in Z as well as for those in X...

• Likewise, you need to be sure to vary the values of variable that appear in both X and
Z in both parts of the equation.

Estimation/maximization issues

• This function can be a pain to maximize, particularly if there is quite a bit of collinearity
among the variables, and/or if the variables in both parts of the model are identical or
nearly so.

• May take LOTS of iterations to converge.
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• Even then, may reach a local maximum.

How to detect a local maximum

• Log-Likelihood: Since the lnL for a heteroscedastic probit ought to be at least as
large as that for a homoskedastic one, you know that there’s a problem if it isn’t...

• Parameter values: If the standard errors are HUGE, and/or the coefficients are
funny-looking, you may have a local maximum.

What to do about local maxima...

• Change the starting values (if possible).

• Try a different maximization algorithm (if possible).

• Tinker with variable scaling, or (just a bit) with model specification (but this should
be a last resort).

Applications

When might one want to use this type of model?

• Alvarez/Brehm: Ambivalence about abortion policy.

◦ “Elaboration Likelihood Model”: Where people have conflicting core beliefs on
certain issues, the variance of their responses to survey items ought to be greater
than those people or issues without such conflicts.

◦ Test this on the issue of abortion (GSS data).

◦ They find that when a respondent’s core values conflict, they are more ambivalent
(variable) in their responses than when no such conflict is present.

◦ See also Alvarez and Brehm 1999; Sanders 2001.

• More generally...

◦ Any time you might expect changes/differences in the variance of the observations’
values on the (binary) dependent variable...

◦ E.g., socialization effects : If people learn a task (e.g. voting) or become socialized
and/or “set in their ways”, their variance on items relating to that socialization
will probably decrease with time, age, etc.

· Could mean voters/survey items, or

· Members of some collegial decision-making body (a legislature, a court, etc.),
and voting on bills, cases, etc., or
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· Could even mean nations or other large aggregate entities.

◦ Da democratic peace: What kind of nations might have more variance in their
propensity to engage in international conflict (possibly autocracies?...)

◦ Diffusion studies (e.g. models of policy innovation in states or nations), where
some states (again, possibly autocracies) may have different variance in their
propensity to adopt some policy innovation.

The point: This is a (potentially very) useful tool, and can reveal a lot about one’s data and
offer the possibility of testing some interesting hypotheses.

Bivariate Probit

Consider two related decisions by the same actor, or by different ones...

• Greene talks about the decision to vote for or against property taxes, and the decision
to send a child to public or private school... or

• A voter voting for House and Senate candidates on the same ballot, or

• A state adopting two different, but related, policy initiatives (e.g. “three strikes” laws
and mandatory sentencing legislation).

The idea is that the two decisions are interrelated...

Consider:

Y ∗
1i = X1iβ1 + u1i (10)

Y1i = 1 if Y ∗
1i > 0

Y1i = 0 otherwise

Y ∗
2i = X2iβ2 + u2i (11)

Y2i = 1 if Y ∗
2i > 0

Y2i = 0 otherwise

In other words, a standard setup for two probit or logit models for Y1 and Y2.

Normally, for a probit model we assume that the errors are distributed N(0,1)...

• Implicit in this is that the two models’ errors are independent of one another.

• That is, Cov(u1i, u2i) = 0.
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• If this is the case, and all the other assumptions hold, we can just estimate the two
equations separately, with no problems.

But, what if the errors in the two equations are related?

For example, consider what happens if we have:

u1i = ηi + ε1i

u2i = ηi + ε2i

In other words, the errors in each model consist of a part (εi) that is unique to that model,
and a second part (ηi) that is common to both.

• We might assume that all three types of errors are normally distributed...

• If this is true, then the uis will also be normal, but they will also be dependent.

• That is, each ui now depends, in part, on the value of ηi, and this in turn means that
u1i and u2i will be related to one another.

Why should we care?

Because it makes a difference...

We’re interested in two things:

Pr(Y1i = 1) = Pr(u1i > −X1iβ1)

= Pr(ε1i + ηi > −X1iβ1)

and

Pr(Y2i = 1) = Pr(u2i > −X2iβ2)

= Pr(ε2i + ηi > −X2iβ2)

That is, we’re interested in the joint probability of Y1 and Y2...

• We know that if two random variables are independent, their joint probability is just
the product of their marginal probabilities.
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• So, if Y1 and Y2 are independent, we can say that:

Pr(Y1 = 1, Y2 = 1) = F (Y1)× F (Y2)

Pr(Y1 = 1, Y2 = 0) = F (Y1)× [1− F (Y2)]

Pr(Y0 = 1, Y2 = 1) = [1− F (Y1)]× F (Y2)

Pr(Y0 = 1, Y2 = 0) = [1− F (Y1)]× [1− F (Y2)]

• These probabilities will sum to one...

But here, the two probabilities are not independent, since they both depend on the (com-
mon) value of ηi...

How do we calculate joint probabilities of nonindependent events?

Remember that:

Pr(A and B) = Pr(A|B)× Pr(B)

= Pr(A)× Pr(B|A)

This means that in the case we have here, if we want to know:

Pr(Y1 = 1, Y2 = 1) = Pr(Y1 = 1|Y2 = 1)× Pr(Y2 = 1)

or Pr(Y1 = 1)× Pr(Y2 = 1|Y1 = 1)

We get at this by assuming a joint distribution for the Y’s...

• In the independent case, this is easy since Pr(Y1 = 1|Y2 = 1) is just Pr(Y1 = 1).

• In the case of dependence, we pick some bivariate joint distribution.

Typically, we use a bivariate normal distribution: for two standard-normally distributed us,
their joint density will be:

φ(u1, u2) =
1

2πσu1σu2

√
1− ρ2

exp

[
−1

2

(
u2

1 + u2
2 − 2ρu1u2

1− ρ2

)]
(12)

where ρ is a “correlation parameter” denoting the extent to which the two us covary.

Its useful to look at several of these. Figure 5 shows a bivariate normal distribution (often
denoted φ2), with u1, u2 ∼ φ2(0, 0, 1, 1, 0) (that is, with no correlation between the two us):
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Figure 5: Bivariate standard normal density, with ρ = 0.

As we increase the correlation between u1 and u2, the graph becomes increasingly “ridge-
shaped.” So, Figure 6 plots the density for ρ = 0.50, and Figure 7, for ρ = 0.90.

If we integrate with respect to the two variables – that is, if we consider∫
u1

∫
u2

φ2(u1, u2, ρ)du1du2

we get the bivariate normal CDF (sometimes denoted Φ2). Here, I’ve plotted it for the case
where ρ = 0.5:

How to think about φ2

• If ρ = 0:

◦ The two variables (or errors) are independent, and the Φ2 reduces to two separate
standard normal distributions.

◦ The “axes” of the two standard normal distributions, when plotted, will be or-
thogonal to one another, and the “hill” formed by the density will be “round” or
“oval” along the two axes.
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Figure 6: Bivariate standard normal density, with ρ = 0.5.

• If ρ 6= 0:

◦ The two variables/errors will be correlated ; the probability of one will be depen-
dent on the value/probability of the other.

◦ The “axes” of the two distributions will not be perpendicular/orthogonal, but will
be at some angle more or less than 90 ... (that is, the “hill” will look more like a
“ridge”).

• In the extreme case, when ρ = 1, the two variables are essentially (actually, exactly)
the same.

• Likewise, when ρ = −1, the two are exactly negatively correlated (i.e. their scales are
reversed).

We use the Φ2 distribution to estimate bivariate probit models. Typically, we assume:

{u1i, u2i} ∼ φ2(0, 0, 1, 1, ρ)

• This then gives us the probability statements we need about Pr(Yk = 1). Specifically,
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Figure 7: Bivariate standard normal density, with ρ = 0.9.

Pr(Y1i = 1, Y2i = 1) =

∫ u1i

−∞

∫ u2i

−∞
φ2(Xi1β1,X2iβ2, ρ)du1idu2i

= Φ2(X1iβ1,X2iβ2, ρ) (13)

• As in the standard probit model, observations contribute some combination of Pr(Yk =
1) for k ∈ {1, 2}, depending on their specific values on those variables. The (log-
)likelihood is then just a sum across the four possible transition probabilities (that is,
the four possible combinations of Y1 and Y2) times their associated probabilities; see
Greene (2003, 710-11) for a nice description of this.

• Suffice it to say that we estimate the parameters of the model (β1, β2, ρ) via maximum
likelihood, usually using the BHHH algorithm.

• The Stata command for this model is -biprob-; the general syntax is:

. biprob <y1var> <y2var> <xvars> ...
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Figure 8: Bivariate standard normal CDF, with ρ = 0.5.

Model Interpretation

Model Fit

• Separate, independent, binary probit models are “nested” in the bivariate probit model
(they occur when ρ = 0).

• This means that we can test the hypothesis that the bivariate probit model fits the
data better than separate models, using a simple likelihood ratio test...

◦ For the separate probit models, the joint likelihood is just the product of the two
separate (marginal) likelihoods.

◦ This means that the joint log-likelihood is just the sum of the two log-likelihoods.

◦ We can compare the joint log-likelihood of the separate models to that for the
bivariate probit model using a standard LR test.

• We can also calculate predicted probabilities, and compare them to actual outcomes
(a la the PRE for a standard binary probit) – see below for how to do this...

Variable Effects

• We can look at coefficients and s.e.s to gauge direction and statistical significance of
individual variable effects, but

• We can’t simply apply the usual probit formulas for marginal effects, first derivatives,
etc.

• Greene gives formulas for the marginal effects for the bivariate probit estimator...
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◦ These can be useful for computing conditional expected values (aka conditional
means).

◦ E.g.: E(Y1|Y2 = 1,X1).

◦ We won’t go into these a lot here...

Predicted Probabilities

• The probability of both dependent variables equaling one is:

Pr(Y1i = 1, Y2i = 1) = Φ2(X1iβ̂1,X2iβ̂2, ρ̂)

where Φ2 denotes the bivariate normal cumulative distribution function given above.

• The joint probabilities for the other three possible outcomes are:

Pr(Y1i = 1, Y2i = 0) = Φ(X1iβ̂1)− Φ2(X1iβ̂1,X2iβ̂2, ρ̂)

Pr(Y1i = 0, Y2i = 1) = Φ(X2iβ̂2)− Φ2(X2iβ̂1,X2iβ̂2, ρ̂)

Pr(Y1i = 0, Y2i = 0) = 1− Φ(X1iβ̂1)− Φ(X2iβ̂2)− Φ2(X2iβ̂1,X2iβ̂2, ρ̂)

• We can use these formulas to construct predicted probabilities (and can also “build”
confidence intervals around these predictions if we want).

• We can predict actual predicted values in the data (“in-sample”), or

• we can ”simulate” predictions across a range of values for independent variables (“out-
of-sample”).

• We can then create a table of the changes in probability associated with discrete changes
in the independent variables, or

• graph them over a range of values, as in the single-equation case...

An Example

Let’s look at some NES data (N = 1598), and consider presidential and congressional voting
in the 1988 general election. We model two variables:

• prezgop is 1 if the respondent voted for Bush, 0 if for Dukakis.

• housegop is 1 if the respondent voted for the GOP House candidate, 0 if they voted
for the Democrat.

Covariates are few:
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• partyid is the standard seven-point scale, with 1 = strong Democrat and 7 = strong
GOP.

• ideology is a seven-point ideological self-placement (1 = “extremely liberal” to 7 =
“extremely conservative”).

• demtherm and goptherm are 100-point Democratic and GOP “feeling thermometers”,
respectively.

The data look like this:

. su

Variable | Obs Mean Std. Dev. Min Max

-----------+-------------------------------------------------

id | 1598 1005.977 574.1227 4 2039

prezgop | 1598 .5519399 .4974506 0 1

housegop | 1598 .4455569 .4971827 0 1

partyid | 1598 4.122653 2.240958 1 7

ideology | 1598 4.444305 1.360168 1 7

demtherm | 1598 59.61452 24.81216 0 100

goptherm | 1598 61.69712 25.24645 0 100

We’ll start by running a couple independent probits:

. probit prezgop partyid ideology demtherm goptherm if housegop~=.

Probit estimates Number of obs = 1598

LR chi2(4) = 1363.49

Prob > chi2 = 0.0000

Log likelihood = -417.26564 Pseudo R2 = 0.6203

---------------------------------------------------------------------

prezgop | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------------------------------------------------------------------

partyid | .2279 .0324578 7.02 0.000 .1642839 .2915161

ideology | .2184815 .044875 4.87 0.000 .1305281 .3064349

demtherm | -.0374455 .0034766 -10.77 0.000 -.0442595 -.0306314

goptherm | .0361379 .0033119 10.91 0.000 .0296466 .0426291

_cons | -1.61985 .3231177 -5.01 0.000 -2.253149 -.9865514

---------------------------------------------------------------------

. probit housegop partyid ideology demtherm goptherm if prezgop~=.

Probit estimates Number of obs = 1598
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LR chi2(4) = 559.36

Prob > chi2 = 0.0000

Log likelihood = -818.47855 Pseudo R2 = 0.2547

---------------------------------------------------------------------

housegop | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------------------------------------------------------------------

partyid | .24128 .025261 9.55 0.000 .1917694 .2907907

ideology | .162891 .0317007 5.14 0.000 .1007588 .2250232

demtherm | -.0069493 .0019742 -3.52 0.000 -.0108186 -.0030799

goptherm | .0022347 .0019352 1.15 0.248 -.0015582 .0060277

_cons | -1.637397 .2412785 -6.79 0.000 -2.110294 -1.164499

---------------------------------------------------------------------

Everything’s pretty much as we’d expect it to be. Next, estimate a bivariate probit:

. biprobit prezgop housegop partyid ideology demtherm goptherm

Bivariate probit regression Number of obs = 1598

Model chi2(8) = 1492.56

Prob > chi2 = 0.0000

Log Likelihood = -1225.6098862 Pseudo R2 = 0.3785

---------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------------------------------------------------------------------

prezgop |

partyid | .2312522 .032292 7.16 0.000 .1679612 .2945433

ideology | .2297631 .0447584 5.13 0.000 .1420383 .3174879

demtherm | -.0360512 .0034408 -10.48 0.000 -.0427951 -.0293073

goptherm | .0348495 .0032825 10.62 0.000 .0284158 .0412831

_cons | -1.696476 .3226331 -5.26 0.000 -2.328825 -1.064127

---------------------------------------------------------------------

housegop |

partyid | .2404114 .0252185 9.53 0.000 .190984 .2898388

ideology | .1629892 .0317416 5.13 0.000 .1007768 .2252016

demtherm | -.0070487 .0019761 -3.57 0.000 -.0109217 -.0031757

goptherm | .0022101 .001937 1.14 0.254 -.0015864 .0060065

_cons | -1.626407 .2412969 -6.74 0.000 -2.099341 -1.153474

---------------------------------------------------------------------

athrho |

_cons | .2925434 .060354 4.85 0.000 .1742517 .4108351

---------------------------------------------------------------------

rho | 0.28447 0.05547 0.17251 0.38918

---------------------------------------------------------------------

Likelihood ratio test of rho=0: chi2(1) = 20.2686 Prob > chi2 = 0.00
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Note that the LR test statistic for the hypothesis that the two equations are independent
(which Stata reports for us) is just −2((−417.27− 818.48)− (−1225.61)) = −2(−1235.75 +
1225.61) = 20.27. This is distributed χ2

1, and is off-the-chart significant here (the highly
significant value of ρ̂ could also have told us this...).

Once we have our estimates, we can do some predicted probabilities – Stata is good at helping
us get those...

. predict pr11, p11

There are lots of other quantities of interest we can -predict-, including standard errors of
the linear predictions (which we can use to generate confidence intervals); see the Stata entry
for -biprobit- for details. Once we have these, we can do cool things like plotting them
(see Figure 9, below)...

Figure 9: Pr(Y1i = 1, Y2i = 1) by demtherm, with lowess smooth line.

A Few Final Thoughts

1. Note that, whenever ρ̂ 6= 0, variables in one part of the model have an indirect influence
on the other “part.”

2. Relatedly, it can be rough getting this model to converge – the example above converged
easily, but that’s under very positive circumstances (i.e., lots of data and very few,
more-or-less continuous covariates).
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3. Finally, model specification is a very important aspect in these models. Think of it
this way: if the “true” model for Pr(Y1i = 1, Y2i = 1) depends on X1,X2 and X3, and
you omit the latter, your “error” terms are now:

e1i = u1i + β3X3i

e2i = u2i + β3X3i

which, by construction, are correlated. This means that an estimate ρ̂ 6= 0 may be
either due to “actual” correlation between the two processes, or simple specification
error.

Models for Rare Events

Sometimes, we study stuff that just doesn’t happen all that often...

• Wars,

• Senate confirmation denials,

• etc.

The Problem(s)

Data Collection Issues

When our events are “rare,” we often find ourselves gathering data on lots of observations,
merely so we can have a sufficient number of “1s” to say something about the phenomenon
of interest. (Data collection in international relations is especially prone to do this). This is
expensive, and time-consuming, and means we can’t spend our time and money collecting
better covariates.

Prediction Bias

In addition to wasting lots of data-collection resources, its also the case that regular-old
(e.g.) logit models do a pretty crappy job of predicting rare events. In particular, standard
models

• underestimate the probability of an event, and

• do so in an increasingly dysfunctional way as the event gets rarer...
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The intuition of this is in the King and Zeng articles (e.g., the PA paper, pp. 146-47); the

basic idea is that ̂Pr(Yi = 1|X) will be systematically underestimated in samples in which
the Y = 1 outcomes are (relatively) rare. This is essentially an issue with classification error
– our ability to accurately gauge a “cutting point” for distinguishing Y = 1|X from Y = 0|X
is “biased in the direction of favoring zeros at the expense of ones.” In particular, the bias
affects the constant term β̂0 directly, and the predictions indirectly.

Formally, if πi is Pr(Yi = 1), and we have a simple one-variable model with β1 = 1 (such

that Pr(Yi = 1) = exp(β0+Xi)
1+exp(β0+Xi)

), then the bias is about

E(β̂0 − β0) ≈
π̄ − 0.5

Nπ̄(1− π̄)

where π̄ is just the mean of πi. When events are rare, so that πi < 0.5, this means that

• the bias is always negative (i.e., we’ll underestimate the constant term, and therefore

consistently underestimate ̂Pr(Yi = 1|X)),

• for N fixed, as π̄ → 0 (that is, as the average probability of an event gets smaller), the
bias gets worse, but

• as N →∞ the bias goes away (that is, the estimator is still consistent).

An Alternative Approach

The papers by King and Zeng (in PA and IO) outline an alternative approach when we’re
faced with “rare events” data. The data collection approach they suggest involves collecting
data on all possible occurrences of “1s” in the data, as well as a random sample of “0s”.
This is called choice-based sampling in econometrics, or case-control sampling in statistics
and biostatistics. The basic idea is:

1. Figure out the proportion τ of the population which have “1s” (i.e., experience the
event of interest).

2. Collect data on all the “1s” in the population.

3. Collect data on a simple random sample of the “0s” as well.

4. Run a logit1 analysis on the data.

5. “Correct” the coefficients and standard errors after the fact.

There are (at least) two ways of correcting the estimates...

1And it does have to be a logit; see below.
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Sampling

For the sake of simplicity, let’s assume (as we often do) that we know the fraction of “1s” in
the population of the data;2 call this proportion τ . Taking data on all the “1s” and a fraction
of the “0s” gives us a sample with a mean proportion of “1s” in the data – call this number
Ȳ . So, for IR data, we might observe wars in only 0.1 percent of the cases (τ = 0.001) but
actually select a sample with (say) all 1000 instances of conflict, as well as 2000 randomly
selected peaceful dyad/years (so that N = 3000 and Ȳ = 0.333).

King and Zeng give some suggestions for how many “0s”, relative to the number of “1s”, one
ought to collect under varying circumstances. Their general suggestion is to collect around
2-5 times as many 0s as 1s, but a ratio of as little as 1/1 (that is, so that Ȳ = 0.5) can also
be fine for some circumstances.

Once we’ve collected the data in this way, we have to deal with the fact that the data are
no longer a purely random sample from the population. There are (at least) a couple ways
of doing this.

Weighting

Not surprisingly, econometricians (e.g. Manski and Lerman 1977; also Greene 2002, 673)
typically solve the problem of choice-based sampling by weighting the observations. Intu-
itively, what we want to do is up-weight the 0’s and down-weight the 1s, in proportion to
their frequency in the population.

Formally, we can think of w1 = τ
Ȳ

as the weights for the 1s, and w0 = 1−τ
1−Ȳ

as the weight for

the 0s. To the extent that τ < Ȳ (which will always be the case for rare events data), this
will have the desired effect. The log-likelihood for this weighted logit then becomes:

lnL(β|Y ) =
N∑

i=1

w1YilnΛ(Xiβ) + w0(1− Yi)ln[1− Λ(Xiβ)] (14)

Weighting is a good option especially when there is a good chance that the model is misspec-
ified (i.e., almost always, in political science). King and Zeng note that, while intuitively
reasonable, there are reasons that the weighting approach may not be optimal:

• Weighting is be less efficient than the prior correction strategy outlined below – making
it less useful in small samples,

• Standard errors from the weighted regression are way off, and

2This would be the case, for example, if we used EuGENE or some similar comprehensive database as our
population, and then sampled from it. If we don’t know τ , then we have to consider an alternative approach,
such as that outlined in King and Zeng (2002 Statistics in Medicine).
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• before K&Z, finite sample corrections weren’t an option.

There’s also...

Prior Correction

With case-control data, its pretty straightforward to show3 that all the usual estimates for
β1...βk are consistent; the only problem is the intercept, which is biased. Thus, a correction
for the standard MLE of the intercept β̂0 is:

β̂0pc = β̂0 − ln

[(
1− τ

τ

)(
Ȳ

1− Ȳ

)]
(15)

Note that, for population data, τ = Ȳ and so the correction doesn’t do anything.

Bias Correction

King and Zeng note that with case-control data, we still have bias in our usual estimates of
β. King and Zeng show that the bias is

bias(β̂) = (X′WX)−1X′Wξ

where ξ is a (rather complicated) combination of the weights wi discussed above, the pre-
dicted probabilities π̂i and the X matrix. Correcting our usual logit estimates [by considering
β̃ = β̂ − bias(β̂)] gives us the “right” (“corrected”) coefficient estimates.

Probability Calculations

Once we’ve calculated the “corrected” parameters, it seems like we can just plug that number
into our standard logit equation to generate predictions:

̂Pr(Yi = 1|X) =
exp(Xiβ̃)

1 + exp(Xiβ̃)

So, it seems like all we need to do is correct our β̂, substitute them in, and we’re off to the
races, no?

Um, no.

In fact, doing this ignores the variability (i.e., uncertainty) in the estimates β̃ – that is,
the variability due to the fact that β̃ is itself a random variable. This is more than just an
innocuous effect, too, since (as King & Zeng note), estimates which have too small a variance

3K&Z attribute this to various people, though McCullagh and Nelder (1989) cite Armitage (1971). A
recent, brief, technical exposition is Abram Kagan, 2001, “A Note on the Logistic Link Function,” Biometrika
88:599-601.
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will (again) result in underprediction of ̂Pr(Yi = 1) (see their figure, p. 149 in PA, or Figure
10).

Figure 10: The Effect of Uncertainty on Probability Predictions. Areas to the right of the
line are Pr(Y = 1).

K&Z offer a way of including this variability back into one’s predictions. The basic idea is
to use the corrected estimates β̃ to get predicted probabilities π̃i, and then in turn correct
these predictions to

Pr(Yi = 1) ≈ π̃i + Ci

where

Ci = (0.5− π̃i)π̃i(1− π̃i)XiV(β̃)X′
i

Notice a couple of things about this correction:

• The uncertainty is captured in the V(β̃) term, which reflects the extent to which there
is intrinsic variability in β̃.

• The fact that, in rare-event circumstances, π̃i < 0.5 means that Ci will be positive for
those instances – that is, it will add to the probability (which is what we want, cf.
Figure 10).
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An Example

If all this seems a bit complicated, well, it is. Happily, K&Z have put together a Stata rou-
tine, called -relogit-, to implement the corrections they outline in their article (and even
to calculate predicted probabilities and the like, a la Clarify).

Consider some data from Oneal and Russett (1997) (also Beck, Katz and Tucker (1998) and
others) on international disputes (specifically, politically-relevant dyad-years, 1950-1985).
We have N = 20448, with 405 dyad-years of MIDs. We’ll run a basic logit model with six
variables: democracy, growth, alliance, contiguity, capability ratio and trade.

First, the basic logit model, on all the data (and some predictions):

. tab1 dispute

-> tabulation of dispute

dispute | Freq. Percent Cum.

------------+-----------------------------------

0 | 20043 98.02 98.02

1 | 405 1.98 100.00

------------+-----------------------------------

Total | 20448 100.00

. logit dispute dembkt grobkt allies contig capbkt trade

Logit estimates Number of obs = 20448

LR chi2(6) = 284.79

Prob > chi2 = 0.0000

Log likelihood = -1846.8783 Pseudo R2 = 0.0716

---------------------------------------------------------------------

dispute | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-----------------------------------------------------------

dembkt |-.4011976 .1006345 -3.99 0.000 -.5984376 -.2039576

grobkt | -3.42753 1.251813 -2.74 0.006 -5.881038 -.9740222

allies |-.4796863 .1127463 -4.25 0.000 -.7006649 -.2587076

contig | 1.353576 .1209052 11.20 0.000 1.116606 1.590546

capbkt |-.1961988 .0501055 -3.92 0.000 -.2944037 -.0979938

trade |-21.07611 11.30396 -1.86 0.062 -43.23146 1.079242

_cons |-4.326677 .1145089 -37.78 0.000 -4.55111 -4.102243

---------------------------------------------------------------------

. predict dumbprobs

(option p assumed; Pr(dispute))
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Next, we’ll select out all the “1s” (disputes) as well as a 5 percent sample of the “0s”
(non-disputes)...

. gen random=.

(20448 missing values generated)

. replace random=invnorm(uniform()) if dispute==0

(20043 real changes made)

. gen select=0

. replace select=1 if dispute==1

(405 real changes made)

. su random, detail

-------------------------------------------------------------

Percentiles Smallest

1% -2.348678 -3.794222

5% -1.649082 -3.786709

10% -1.274943 -3.714839 Obs 20043

25% -.6673297 -3.579602 Sum of Wgt. 20043

50% -.0052992 Mean -.0004152

Largest Std. Dev. .9976583

75% .6688103 3.449271

90% 1.267455 3.629463 Variance .995322

95% 1.650757 3.700645 Skewness .005595

99% 2.378313 3.915892 Kurtosis 3.006424

. replace select=1 if random>1.65 & random~=.

(1004 real changes made)

. tab1 dispute if select==1

-> tabulation of dispute if select==1

dispute | Freq. Percent Cum.

------------+-----------------------------------

0 | 1004 71.26 71.26

1 | 405 28.74 100.00

------------+-----------------------------------

Total | 1409 100.00

Now, check out what happens when we run a standard logit on the “selected” data only:
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. logit dispute dembkt grobkt allies contig capbkt

trade if select==1

Logit estimates Number of obs = 1409

LR chi2(6) = 191.85

Prob > chi2 = 0.0000

Log likelihood = -749.25422 Pseudo R2 = 0.1135

---------------------------------------------------------------------

dispute | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-----------------------------------------------------------

dembkt | -.4765852 .1211715 -3.93 0.000 -.7140771 -.2390934

grobkt | -2.708746 1.599052 -1.69 0.090 -5.842829 .4253377

allies | -.2583556 .142826 -1.81 0.070 -.5382893 .0215781

contig | 1.279885 .1436829 8.91 0.000 .9982717 1.561498

capbkt | -.1742606 .0508522 -3.43 0.001 -.273929 -.0745922

trade | -16.92824 11.84484 -1.43 0.153 -40.1437 6.287222

_cons | -1.446798 .1297272 -11.15 0.000 -1.701059 -1.192537

---------------------------------------------------------------------

The results aren’t all that different, except for the constant (which, unsurprisingly, is a lot
larger in the latter analysis).

Next, we use the -relogit- command to correct these estimates for the biases K&Z talk
about. There are two ways of going about this, one which uses the weighted regression
approach in (14), the other which uses the prior correction method in (15). We’ll do both
here:

. relogit dispute dembkt grobkt allies contig capbkt

trade if select==1, pc(.02)

Corrected logit estimates Number of obs = 1409

--------------------------------------------------------------------

| Robust

dispute | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------

dembkt | -.475866 .1199331 -3.97 0.000 -.7109306 -.2408014

grobkt |-2.695515 1.567849 -1.72 0.086 -5.768443 .3774127

allies |-.2559159 .1464495 -1.75 0.081 -.5429517 .0311199

contig | 1.274234 .1422197 8.96 0.000 .9954883 1.552979

capbkt |-.1654231 .058356 -2.83 0.005 -.2797987 -.0510474

trade |-14.16053 12.70195 -1.11 0.265 -39.0559 10.73484

_cons |-4.432804 .1286873 -34.45 0.000 -4.685027 -4.180582
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--------------------------------------------------------------------

. relogit dispute dembkt grobkt allies contig capbkt

trade if select==1, wc(.02)

Corrected logit estimates Number of obs = 1409

--------------------------------------------------------------------

| Robust

dispute | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------

dembkt | -.4558843 .1220236 -3.74 0.000 -.6950462 -.2167224

grobkt | -3.853615 1.674077 -2.30 0.021 -7.134746 -.5724839

allies | -.3319833 .1502555 -2.21 0.027 -.6264787 -.0374879

contig | 1.293922 .149677 8.64 0.000 1.000561 1.587284

capbkt | -.1744629 .0607157 -2.87 0.004 -.2934635 -.0554622

trade | -14.18243 13.9973 -1.01 0.311 -41.61663 13.25176

_cons | -4.392938 .1332107 -32.98 0.000 -4.654027 -4.13185

--------------------------------------------------------------------

Not surprisingly, the two don’t look all that different.

Finally, -relogit- makes it easy for us to generate “quantities of interest” (mainly pre-
dictions), using the same -setx- command we used with Clarify) to set the values of the
independent variables, and then using a corollary command (-relogitq-) to create the
probabilities. Check the documentation on that...

Wrap-Up

∃ several important things to remember about this rare-events stuff...

• You’re better off knowing this stuff in advance – the whole point of all this is to
make it possible to do case-control studies (which, both implicitly and explicitly, K&Z
advocate). Its a good approach for a lot of things we might study (not just wars...).

• In the example above, the corrections to the predictions don’t really make that much
of a difference in the actual outcomes. Which is to say: Some things are just rare, and
(therefore) hard to predict. No statistical technique can make up for that fact.
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