
POLI 8501
Binary Logit & Probit, II

The topic du jour is interpretation of binary response models (i.e. logit and probit
estimates).

• Yes, their interpretation is harder (more involved, acutally) than OLS, BUT

• It’s not that much harder.

We’ll talk about a number of different approaches to interpreting these models. But, for
now, remember three key points:

1. Nearly all of these approaches require one to be cognizant of “where we are on the
curve”.

2. When it comes to any kind of interpretation, a picture really is much more valuable
than text or tables.

3. With very rare exceptions, it is never a good idea to present quantities of interest
without their associated measures of uncertainty.

A Running Example: House Voting on NAFTA

To motivate the discussion, we’ll use a running example: The U.S. House of Representatives
vote on the North American Free Trade Agreement (NAFTA). In 1993, the House voted to
approve ratification of NAFTA by a margin of 234 − 200. Our example data thus contain
435 observations and five variables:

1. vote - Whether (= 1) or not (= 0) the House member in question voted in favor of
NAFTA.

2. democrat - Whether the House member in question is a Democrat(= 1) or a Republican
(= 0).

3. pcthispc - The percentage of the House member’s district who are of Latino/Hispanic
origin.

4. cope93 - The 1993 AFL-CIO (COPE) voting score of the member in question; this
variable ranges from 0 to 100, with higher values indicating more pro-labor positions.

5. DemXCOPE - The multiplicative interaction of democrat and cope93.

Our expectations are that:
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• Higher COPE scores will correspond to lower probabilities of voting for NAFTA,

• Members from districts with higher numbers of Latinos will have higher probabilities
of voting for NAFTA, but

• The effect of the former will be moderated by political party. In particular, the (nega-
tive) effect of COPE scores on pro-NAFTA voting will be greater for Democrats than
for Republicans.

The relevant model, then, looks like:

Pr(votei = 1) = f [β0 + β1(democrati) + β2(pcthispci) +

β3(cope93i) + β4(democrati × cope93i) + ui] (1)

The data look like this:

. su

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

vote | 434 .5391705 .4990386 0 1

democrat | 435 .583908 .4934767 0 1

pcthispc | 435 8.786207 14.28133 0 83

cope93 | 435 60.03908 39.2254 0 100

DemXCOPE | 435 51.52644 45.56422 0 100

and we can estimate this model using (e.g.) the -logit- and/or -probit- commands in
Stata :

. logit vote democrat pcthispc cope93 DemXCOPE

Logistic regression Number of obs = 434

LR chi2(4) = 162.16

Prob > chi2 = 0.0000

Log likelihood = -218.41388 Pseudo R2 = 0.2707

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

democrat | 6.865556 1.547357 4.44 0.000 3.832792 9.898319

pcthispc | .0209106 .007941 2.63 0.008 .0053466 .0364747

cope93 | -.0365007 .0075976 -4.80 0.000 -.0513917 -.0216097

DemXCOPE | -.0670544 .0182039 -3.68 0.000 -.1027334 -.0313754

_cons | 1.79164 .2754383 6.50 0.000 1.251791 2.331489

------------------------------------------------------------------------------

For the rest of the class, we’ll talk about a host of means for interpreting models, using these
data as a running example.
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“Signs-N-Significance”

One alternative for interpretation is what I call “signs-n-significance”: talk about the sign(s)
of the estimated coefficient(s), and whether (and to what extent) that coefficient is statisti-
cally differentiable from zero.

• For all of the models we’ve discussed, this approach is no different than for OLS:

◦ A positive estimate for β̂X mean that increases in X correspond to increases in
Pr(Y = 1).

◦ Likewise, a negative estimate for β̂X mean that increases in X correspond to
decreases in Pr(Y = 1).

• Similarly, the ratio of β̂ to its standard error is a z-score that can be used for hypothesis
testing, etc.

So, in the example, we might note that (for Republicans), the estimate of the effect of cope93
is negative (as expected), and that it is “statistically significant” (because its z-score is -4.77).

Note also that, because we have an interaction term in the model, the “direct effects” have a
conditional interpretation. So, for example (referencing Equation 1), the estimated coefficient
for the cope93 variable when democrat = 1 is:

β̂cope93|democrat=1 = β̂3 + β̂4

As with linear regression, we can obtain these “conditional” coefficient estimates – and their
standard errors, z-scores, and confidence intervals – using the -lincom- command:

. lincom cope93 + DemXCOPE

( 1) cope93 + DemXCOPE = 0

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | -.1035551 .0165809 -6.25 0.000 -.1360531 -.0710572

------------------------------------------------------------------------------

Thus, we can say that the effect of pro-union ideology – which was negative and significant for
Republicans – is also negative, also significant, and roughly three times larger for Democrats.
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Figure 1: Pr(Y = 1) and ∂Pr(Y =1)
∂X

versus X for Y = Λ(0 + 2X)
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Predicted Probabilities

“Signs-n-Significance” is – to put it mildly – a rotten way to interpret this or any statistical
model. What we really care about is, in most cases, the effect of changes in X on Pr(Y = 1)
– that is, on the probability of the actual event of interest. To get at this is a bit more
involved than in the OLS case.

In all the binary-response models we’ve discussed, the effect of covariates is linear in the
latent variable (that is, Y ∗), but not in Y . The real net effect of a change in X depends
critically on the values of the other Xs and parameter estimates, and on the constant; This is
because the model is nonlinear. We can see this by noting that – unlike in a linear regression
model – the first derivative of a logit/probit function depends on the value(s) of X and β̂.
So, for example, in the case of a binary logit:

∂Pr(Ŷi = 1)

∂Xk

≡ λ(X) =
exp(Xiβ̂)

[1 + exp(Xiβ̂)]2
β̂k (2)

This non-constant first derivative is illustrated in Figure 1. As a practical matter, this means
that if you’re interested in the effect of a one-unit change in X on Pr(Yi = 1), how much
change there is depends critically on “where you are on the curve.”

4



Figure 2: Changes in Pr(Y = 1) for One-Unit Changes in X, for Y = Λ(0 + 2X)
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To illustrate this, consider first a model with a single continuous covariate X:

Pr(Yi = 1) = Λ(β0 + β1Xi) (3)

where we have an estimated β̂1 = 2.0 and no intercept (β̂0 = 0). The change in Pr(Y = 1)
associated with a one-unit change in X varies depending on the “baseline” value of X, as
well as on any other covariates’ values in the model. So, for example, if we change X = −1
to X = 0, then the associated change in the predicted probability is:

exp(2× 0)

1 + exp(2× 0)
− exp(2×−1)

1 + exp(2×−1)
=

exp(0)

1 + exp(0)
− exp(−2)

1 + exp(−2)

=
1

2
− 0.14

1.14
= 0.50− 0.12

= 0.38

On the other hand, if we are going from X = 1 to X = 2, we get:
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exp(2× 2)

1 + exp(2× 2)
− exp(2× 1)

1 + exp(2× 1)
=

exp(4)

1 + exp(4)
− exp(2)

1 + exp(2)

=
7.39

8.39
− 1

2
= 0.98− 0.88

= 0.10

These changes are illustrated graphically in Figure 2.

More generally, the change in Pr(Y = 1) associated with a (possibly multivariate) change in
the values of the covariate vector X from XA to XB is:

∆Pr(Y = 1)XA→XB
=

exp(XBβ̂)

1 + exp(XBβ̂)
− exp(XAβ̂)

1 + exp(XAβ̂)
(4)

As a practical matter, all this means that you need to be careful of the values of the other
variables in the model when assessing one variable’s impact.

Getting Predicted Probabilities

All predicted probabilities – whether in-sample or out-of-sample – take on the same general
form:

Pr(Yi = 1) =
exp(Xiβ̂)

1 + exp(Xiβ̂)
for logit,

= Φ(Xiβ̂) for probit.

Stata makes it very easy to obtain these predictions after estimating your regression. After
running either model, just type:

. predict <varname>

...and Stata will create a variable called varname that contains the predicted probability of
Yi = 1 for each of the observations in whatever data are in memory. (Stata will also give
that new variable a generic label, which you’ll almost certainly want to change). Also useful
is the fact that we can generate the predicted index value Xiβ̂ for each observation in the
data, using:

. predict <varname>, xb

6



Likewise, we can calculate the standard error of the linear prediction – that is, the standard
error of Xiβ̂ – using:

. predict <varname>, stdp

As we’ll see, the latter are important when we go to use these predictions.1

What Do We Do With Predictions?

First off, note that there are two types of predictions that we typically care about:

• In-sample predictions are simply the predicted probabilities of Yi = 1 for the observa-
tions in the data on which the model was estimated.

• Out-of-sample predictions are predictions for cases that don’t necessarily exist in the
data, but which might be of interest (e.g., hypothetical cases).

In-Sample Predictions

As we note above, Stata will automatically generate in-sample predictions and their associ-
ated measures of uncertainty using -predict-. For our NAFTA voting data, for example,
we might use:

. logit ...

(output omitted)

. predict probhat

(option p assumed; Pr(vote))

. predict xbeta, index

. predict sehat, stdp

. gen Lindex=xbeta-invnorm(0.975)*sehat

. gen Uindex=xbeta+invnorm(0.975)*sehat

. gen L_prob=exp(Lindex) / (1+exp(Lindex))

. gen U_prob=exp(Uindex) / (1+exp(Uindex))

These can then be plotted,2 as in Figure 3:

1As a matter of fact, there are lots of other things that -predict- will calculate for you after estimation
of probit or logit models; these include various kinds of residuals, influence statistics (to check for outliers),
score values, etc. We won’t go into those here; check -help predict- in Stata if you’re curious...

2For the interested, the Stata commands to do so are available at the end of these notes.
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Figure 3: Smoothed In-Sample ̂Pr(Y = 1)s and 95% Confidence Intervals

These plots are based on the actual data, and so are very “noisy;” notice that I use a
median spline smoother to make the plots smoother (and prettier). The plot in Figure 3 is
informative; for example, it clearly reflects the finding that the effect of changes in cope93

are greater for Democrats than for Republicans.

Out-Of-Sample Predictions

We also use the -predict- command to do out-of-sample predictions. The key to dealing
with out-of-sample predictions is in selecting the variables of most interest to us, and then
holding the other variables in the model constant at some particular level. To do this, we
usually choose the mean for continuous variables, and the median or mode for others (since
the mean of a dichotomous variable is a nonsensical value). We then use these to calculate an
index value: the value of the combination of the covariate mean/medians and the estimated
coefficients (i.e.,

∑K
k=1 Xkβ̂k); to get the estimated mean probability of a positive outcome,

we take the logit transform of this.
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Presenting out-of-sample predictions usually involves one of two methods: either we report
the predictions in tabular format, or we plot the predicted probabilities. 99 percent of the
time, the latter is better than the former, but we’ll discuss both here.

Tables of Predictions

The method for generating tables of predicted probabilities is pretty straightforward:

1. Calculate the “index value” for a “mean” (typical) observation.

2. Choose some amount by which you want to change the value of the independent variable
in question.

• Standard deviations are good – they make results across covariates a little more
comparable. But,

• They may also be some substantively interesting value(s).

3. Calculate the “index value” for two (or more) alternative observations – say, one σ
above and below the mean.

4. From these, calculate the associated predicted probabilities, and report them.

All of this can be done (e.g.) in a spreadsheet, to make your life easier.

Graphs of Predicted Probabilities

Generally, plots of predicted probabilities are a (much) better option than tables. First, pick
out a variable of interest: Let’s assume here that we are interested in plotting graphically
the different effects of changes in COPE scores on Democrats’ and Republicans’ votes for
NAFTA. To do this, we start with a “dummy” (simulated) dataset that contains all the
variables used in the original analysis:

. estat summ

Estimation sample logit Number of obs = 434

-------------------------------------------------------------

Variable | Mean Std. Dev. Min Max

-------------+-----------------------------------------------

vote | .5391705 .4990386 0 1

democrat | .5852535 .4932468 0 1

pcthispc | 8.799539 14.2951 0 83

cope93 | 60.17742 39.16429 0 100

DemXCOPE | 51.64516 45.54939 0 100

-------------------------------------------------------------
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. clear

. set obs 101

obs was 0, now 101

. gen democrat=0

. gen pcthispc=8.8

. gen cope93=_n-1

. expand 2

(101 observations created)

. sort cope93

. quietly by cope93 : replace democrat=democrat[_n-1]+1 if democrat[_n-1]~=.

. gen DemXCOPE = democrat*cope93

. summarize

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

democrat | 202 .5 .5012422 0 1

pcthispc | 202 8.8 0 8.8 8.8

cope93 | 202 50 29.22719 0 100

. save NAFTAsim

file NAFTAsim.dta saved

These simulated data contain all the (independent) variables in the original analysis. Note
that we have set the pcthispc variable to its mean value. We also have 101 observations in
which democrat=0 and cope93 ranges from 0 to 100, and another 101 observations in which
democrat=1 and cope93 ranges from 0 to 100.

Next, we rerun the original model, then use -predict- on our simulated data to generate
predicted probabilities and their standard errors, in a manner analogous to what we did
in-sample:

. use NAFTA.dta
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. logit vote democrat pcthispc cope93 DemXCOPE

(output omitted...)

. use NAFTAsim

. predict Probhat

(option p assumed; Pr(vote))

. predict XBeta, xb

. predict seXB, stdp

. gen Lindex=XBeta-invnorm(0.975)*seXB

. gen Uindex=XBeta+invnorm(0.975)*seXB

. gen L_prob=exp(Lindex) / (1+exp(Lindex))

. gen U_prob=exp(Uindex) / (1+exp(Uindex))

We now have the predicted probabilities and their 95 percent confidence intervals for the
range of cope93 values, for both Democrats and Republicans. We can use these data to
create plots, like the one in Figure 4.3

Figure 4 tells us that, with all other variables at their mean values, the predicted probability
of a pro-NAFTA vote decreases significantly as a member’s COPE score increases. However,
the magnitude of that decrease is significantly larger for Democrats than for Republicans.
One interpretation of this, then, is that Democrats are (as one might expect) more respon-
sive to district-level union concerns than are Republicans.

The confidence intervals in Figure 4 are also useful. They tell us that, over most of the
range of COPE scores, Democrats and Republicans are quite different in their probability of
voting for NAFTA. At high levels of COPE scores, however, they converge. Thus, pro-union
Democrats and Republicans tended to vote alike (that is, against NAFTA), while those less
favorable toward unions behaved differently.

There are other things one can do with predicted probabilities, including 3-D plots (which
are very useful for interactions of two continuous variables). But that’s probably enough for
now; let’s move on.

3Once again, the command for this graph is in the Appendix at the end of these notes.
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Figure 4: Predicted Probabilities of a Pro-NAFTA Vote, by Party Identification and COPE
Score

Note: Solid line is predicted probabilities for Republicans; dashed line for
Democrats. Regions indicate 95% pointwise confidence intervals for the pre-
dictions.

Odds Ratios and the Logit Model

Odds ratios are an easy way of substantively interpreting a logit model. Consider the
“odds” of Y = 1 for a given observation with some values of X:

Ω(X) =
Pr(Y = 1|X)

Pr(Y = 0|X)
=

Pr(Y = 1|X)

1− Pr(Y = 1|X)
=

exp(Xβ)
1+exp(Xβ)

1− exp(Xβ)
1+exp(Xβ)

(5)

So, if Pr(Y = 1) = 0.50, then the odds are 1 to 1; for Pr(Y = 1) = 0.75, the odds are 3 to
1, etc. Note that the odds range from zero to infinity (but will never be negative).
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If Ω is the odds, then lnΩ is the “log-odds” (which is also known as the logit), which ranges
from negative infinity to infinity. This means that:

lnΩ(X) = ln

[ exp(Xβ)
1+exp(Xβ)

1− exp(Xβ)
1+exp(Xβ)

]
= Xβ (6)

That is – and as we noted last class – in the logit model, the log-odds are linear in X. This
means that if we consider the effect of a change in X on the log-odds of Y , we get:

∂lnΩ

∂X
= β (7)

In other words, the estimate β̂k from our logit equation tells us the change in the log-odds
which accompanies a one-unit change in Xk.

But normal people don’t think in terms of log-odds,4 they think in terms of odds. (7) means
that the change in the odds of Y = 1 associated with a one-unit change in Xk is:

Ω(Xk + 1)

Ω(Xk)
= exp(β̂k) (8)

More generally,

Ω(Xk + δ)

Ω(Xk)
= exp(β̂kδ) (9)

As a practical matter, Equation (8) means that we can interpret the exponentiated coeffi-
cients of a logit model as the change in the odds of Pr(Y = 1) associated with a one-unit
change in Xk. This translates easily to a percentage change in the odds as well:

Percentage Change = 100[exp(β̂kδ)− 1] (10)

Thus, for example:

• For a logit estimate of β̂ = 2.3, a unit change in X...

◦ ...corresponds to an increase in the log-odds of Y = 1 of 2.3, or

◦ ...a change in the odds that Y = 1 of exp(2.3) = 9.974, or

◦ ...a percentage change in the odds that Y = 1 of 100[exp(β̂)− 1] = 897 percent.

• For a logit estimate of β̂ = −0.22, an 11–unit change in X...

◦ ...corresponds to a −0.22× 11 = −2.42 decrease in the log-odds of Y = 1, or

◦ ...a change in the odds that Y = 1 of exp(−0.22× 11) = exp(−2.42) = 0.089, or

4If I took you to the track, and told you the log-odds of a horse coming in win, place or show were -1.95,
would you bet on it? (That’s 7 to one, for you race fans...).
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◦ ...a percentage change in the odds that Y = 1 of 100[exp(−0.22 × 11) − 1] =
100(0.089− 1) = −91.1 percent.

Odds ratios are thus an easy, intuitive way to interpret logit coefficients. Moreover, for
Stata users out there, the software will report odds ratios rather than β̂s – along with their
standard errors, z-scores, and confidence intervals – automatically; all you have to do is ask:

. logit, or

Logistic regression Number of obs = 434

LR chi2(4) = 162.16

Prob > chi2 = 0.0000

Log likelihood = -218.41388 Pseudo R2 = 0.2707

------------------------------------------------------------------------------

vote | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

democrat | 958.6783 1483.417 4.44 0.000 46.19134 19896.89

pcthispc | 1.021131 .0081088 2.63 0.008 1.005361 1.037148

cope93 | .9641574 .0073253 -4.80 0.000 .9499065 .9786221

DemXCOPE | .9351443 .0170233 -3.68 0.000 .9023675 .9691117

------------------------------------------------------------------------------

This also extends to ancilliary/post-estimation commands, such as -test- and -lincom-,
e.g.:

. lincom cope93 + DemXCOPE, eform

( 1) cope93 + DemXCOPE = 0

------------------------------------------------------------------------------

vote | exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .9016263 .0149498 -6.25 0.000 .8727963 .9314086

------------------------------------------------------------------------------

Finally, in using odds ratios, remember that:

• Percentage decreases in odds are bounded at 100 (naturally), but have no upper bound.
That means that...

• ...if exp(β̂kδ) < 1, the we would say that the odds of Y = 1 are “only 100[exp(β̂kδ)−1]
percent of those for cases with X = X0 + δ, versus those with X0.”

• If exp(β̂kδ) > 1, the we would say that the odds of Y = 1 are “100[exp(β̂kδ) − 1]
percent of those for cases with X = X0 + δ, versus those with X0.”
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Clarify

What it is

Clarify is a program (actually, a set of programs) written by political scientists Gary King,
Mike Tomz, and Jason Wittenberg. It is implemented in Stata , and is designed to allow re-
searchers to easily interpret regression-like models in a more intuitive (and, we hope, correct)
way. Clarify does this through the use of simulations of parameters and other quantities of
interest; the relevant citation is:

King, Gary, Michael Tomz and Jason Wittenberg. 2000. “Making the Most of Statistical
Analyses: Improving Interpretation and Presentation.” American Journal of Political
Science, 44(April): 341-55.

You can check out the documentation yourself at

http://gking.harvard.edu/clarify/docs/clarify.html.

How to use it

There are three main commands that one uses, almost always in this sequence:

1. -estsimp- is a “wrapper” that goes before a standard regression-like command, and
causes Stata to follow estimating the model by generating 1000 (or however many you
choose) draws from the asymptotic posterior distribution of the parameter estimates
(typically, a multivariate Normal distribution with means equal to the estimates and
variance-covariance matrix equal to the estimated VCV matrix – that is, it draws 1000

vectors θ̃ from MVN(θ̂, V̂CV(θ̂))). You can then (e.g.) plot these simulations to get an
idea of what your parameter estimates “look like” (remember: β̂ is a random variable
– so you ought to be (at least) as interested in its dispersion around the point estimate
as you are in the point estimate’s value itself...).

2. -setx- allows you to set the values of the various independent variables – to their
means, medians, etc. or even to specific values you choose.

3. -simqi- simulates (and generates) quantities of interest – things like expected values
of Y , predicted probabilities of various kinds, and so forth.

An Example

We’ll go back to our NAFTA voting example again...

First, estimate the same logit model we did before, but this time with the -estsimp- wrapper
on it:
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. estsimp logit vote democrat pcthispc cope93 DemXCOPE

Logistic regression Number of obs = 434

LR chi2(4) = 162.16

Prob > chi2 = 0.0000

Log likelihood = -218.41388 Pseudo R2 = 0.2707

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

democrat | 6.865556 1.547357 4.44 0.000 3.832792 9.898319

pcthispc | .0209106 .007941 2.63 0.008 .0053466 .0364747

cope93 | -.0365007 .0075976 -4.80 0.000 -.0513917 -.0216097

DemXCOPE | -.0670544 .0182039 -3.68 0.000 -.1027334 -.0313754

_cons | 1.79164 .2754383 6.50 0.000 1.251791 2.331489

------------------------------------------------------------------------------

Simulating main parameters. Please wait....

Note: Clarify is expanding your dataset from 435 observations to 1000

observations in order to accommodate the simulations. This will append

missing values to the bottom of your original dataset.

% of simulations completed: 20% 40% 60% 80% 100%

Number of simulations : 1000

Names of new variables : b1 b2 b3 b4 b5

. su

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

b1 | 1000 6.86644 1.550493 1.928434 11.33249

b2 | 1000 .0210454 .0078827 -.0051356 .0456498

b3 | 1000 -.0362176 .0075131 -.055486 -.0100977

b4 | 1000 -.0673823 .0184587 -.1221915 -.0107905

b5 | 1000 1.791742 .2713336 .856936 2.580538

-------------+--------------------------------------------------------

vote | 434 .5391705 .4990386 0 1

democrat | 435 .583908 .4934767 0 1

pcthispc | 435 8.786207 14.28133 0 83

cope93 | 435 60.03908 39.2254 0 100

DemXCOPE | 435 51.52644 45.56422 0 100

-------------+--------------------------------------------------------
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Figure 5: Simulated pcthispc Parameters, Using Clarify

Notice that Clarify changed your data (keep this in the very front of your mind whenever you
use Clarify). The different bs are simulated parameters for the variables in the -logit- (no-
tice how they have more-or-less the same means and standard deviations as the estimates?).
Sometimes it’s keen to graph these things, like in Figure 5; there, the logit point estimate is
indicated by the dashed line.

Next, we use -setx- to set the variables to some values of interest (like, say, their means or
medians):

. setx democrat median pcthispc mean cope93 mean DemXCOPE mean

This doesn’t appear to do anything, but its actually a very important step.

Finally, we use -simqi- to generate some things we care about, and/or that make interpret-
ing the model easier and more fun. This is where Clarify really becomes useful: once you’ve
finalized your model, its really easy to generate all kinds of useful pieces of information about
your model results using -simqi-. For example:
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• Predicted probabilities, at the values of X at which you -setx-:

. simqi

Quantity of Interest | Mean Std. Err. [95% Conf. Interval]

-----------------------+--------------------------------------------------

Pr(vote=0) | .0485171 .0334052 .0113376 .138122

Pr(vote=1) | .9514829 .0334052 .861878 .9886624

• The difference in the predicted probability of a pro-NAFTA vote between Democrats
and Republicans (assuming cope93 = 0):

. simqi fd(pr) changex(democrat 0 1)

First Difference: democrat 0 1

Quantity of Interest | Mean Std. Err. [95% Conf. Interval]

-----------------------+--------------------------------------------------

dPr(vote = 0) | -.9167421 .0660248 -.9839994 -.7350486

dPr(vote = 1) | .9167421 .0660248 .7350486 .9839994

• The change in ̂Pr(Y = 1), changing the pcthispc from scores of 5 to 40:

. simqi fd(pr) changex(pcthispc 5 40)

First Difference: pcthispc 5 40

Quantity of Interest | Mean Std. Err. [95% Conf. Interval]

-----------------------+--------------------------------------------------

dPr(vote = 0) | -.0250473 .0181051 -.0727688 -.0044629

dPr(vote = 1) | .0250473 .0181051 .0044629 .0727688

• The change in ̂Pr(Y = 1) one gets from going from a 0% pro-labor Republican to a
100% pro-labor Democrat:

. simqi fd(pr) changex(democrat 0 1 cope93 0 100)

First Difference: democrat 0 1 cope93 0 100

Quantity of Interest | Mean Std. Err. [95% Conf. Interval]

-----------------------+--------------------------------------------------

dPr(vote = 0) | -.6005153 .2683254 -.9361235 .0607074

dPr(vote = 1) | .6005153 .2683254 -.0607074 .9361235

There are lots of other possible uses for Clarify; give it a look...
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Goodness-of-Fit

As in linear models, it’s useful to present measures of how well (or poorly) the model fits the
data in the aggregate. We’ll talk about three general ways of conveying this information:

• Pseudo-R2,

• Proportional reduction in error (PRE), and

• ROC curves.

Pseudo-R2

• There are several different flavors of these...

• They can be based on likelihood ratios, predicted values, etc.

• They are not always all that useful (see the Hagle and Mitchell article), in that they can
have odd statistical properties and rarely have an intuitive substantive interpretation.

• IMO, PRE (see below) is generally a better (and more intuitive) summary for goodness-
of-fit in these models.

Proportional Reduction in Error (PRE)

The intuition behind PRE is to answer the question, “How much better does my model do
than dumb guessing?” First, let’s use our predicted probabilities to generate some (binary)
predictions about how members will vote on NAFTA:

. gen VoteHat=.

(435 missing values generated)

. replace VoteHat = 0 if probhat<.5 & probhat~=.

(197 real changes made)

. replace VoteHat = 1 if probhat>.5 & probhat~=.

(238 real changes made)
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Now we can compare our predictions to the actual values, to see how well we did:

. tab2 vote VoteHat, col

-> tabulation of vote by VoteHat

1=vote for |

NAFTA, |

0=vote | VoteHat

agains | 0 1 | Total

-----------+----------------------+----------

0 | 148 52 | 200

| 75.13 21.94 | 46.08

-----------+----------------------+----------

1 | 49 185 | 234

| 24.87 78.06 | 53.92

-----------+----------------------+----------

Total | 197 237 | 434

| 100.00 100.00 | 100.00

Now think about how our model is doing...

• If we were to take a guess at Ŷ without any information on the Xs, the best we could
do would be to always guess the median category.

◦ We’d guess that everyone was going to vote for NAFTA.

◦ We’d be right 234
434

= 53.5% of the time.

◦ BUT we could do a lot better – think of the 200 votes we would get wrong as our
“room for improvement”.

• Our model predicts 148 of the 200 “nos” correctly (74.0%), and 185 of the 234 “yess”
(79.1%).

• All together, our model gets (148+185 =) 333 (or 333
434

= 76.7%) of the votes correct,
or (333 - 234 =) 99 more votes right than the “null model.”

• So, our proportional reduction in error is 333−234
200

= 99
200

= 49.5%.

• That is, our model eliminated nearly 50% of the error, relative to the “null model.”
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More generally, the formula for PRE is:

PRE =
NMC −NNC

N −NNC

(11)

where NNC is the number correct under the “null model,” NMC is the number correct under
the estimated model, and N is the total number of observations.

Note a few things about this...

• Its possible (but unlikely) to have a negative PRE...

• The maximum PRE is (of course) 100 percent.

• The PRE doesn’t necessarily say anything about aggregate outcomes, though obviously
the better your PRE, the closer your model will come to getting the aggregate outcome
“right.”.

It is commonplace in the social sciences to report PRE as a substitute for R2 in binary-
response models, usually along with the overall proportion of observations correctly classified.
Moreover, when more than one model is involved (e.g., different specifications of covariates),
PRE can be a useful way to get an intuitive sense of which model(s) are performing better
or worse, in predictive terms.

As it happens, Stata will automatically calculate a number of the statistics we just discussed
(though not PRE itself), via the post-estimation command -estat clas-:

. estat clas

Logistic model for vote

-------- True --------

Classified | D ~D | Total

-----------+--------------------------+-----------

+ | 185 52 | 237

- | 49 148 | 197

-----------+--------------------------+-----------

Total | 234 200 | 434

Classified + if predicted Pr(D) >= .5

True D defined as vote != 0

--------------------------------------------------

Sensitivity Pr( +| D) 79.06%

Specificity Pr( -|~D) 74.00%

Positive predictive value Pr( D| +) 78.06%
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Negative predictive value Pr(~D| -) 75.13%

--------------------------------------------------

False + rate for true ~D Pr( +|~D) 26.00%

False - rate for true D Pr( -| D) 20.94%

False + rate for classified + Pr(~D| +) 21.94%

False - rate for classified - Pr( D| -) 24.87%

--------------------------------------------------

Correctly classified 76.73%

--------------------------------------------------

This introduces some useful jargon for us:

• Sensitivity is the probability of a positive prediction given a positive (actual) outcome;
that is, the proportion of all “1s” that the model classifies as / predicts to be “1.”
These are also called “true positives,” or the “true positive fraction;” as we noted, in
our example, this is 185/234 ≈ 0.79.

• Specificity is the same thing, but for negative (zero) responses: the proportion of
(actual) zero outcomes that the model classifies as zeros. These are known as “true
negatives,” or the “true negative fraction;” in our example, this is 148/200 ≈ 0.74.

• Given these definitions, the quantity 1−Sensitivity is therefore the fraction of “false
positives” (predicted “1s” with actual “0s”), and likewise 1−Specificity is the fraction
of “false positives” (predicted “0s” with actual “1s”).

As we’ll see in a bit, these values are useful for calculating ROC curves, which are an
alternative (graphical) indication of goodness-of-fit.

ROC Curves

ROC stands for “receiver operating characteristic.”5 It can be thought of as a plot of the
true positive rate against the false positive rate for a particular classification model. It is
also, however, a useful way to assess model fit for binary response models.

As an example, we can plot the ROC curve for our NAFTA model:

. lroc, recast(connected) msymbol(smcircle) mcolor(black) msize(medsmall)

which yields

5The name comes from signal detection theory; ROCs were developed during World War II, by math-
ematicians and statisticians working with radar operators. A nifty little web-based introduction to ROC
curves can be found at http://www.anaesthetist.com/mnm/stats/roc/Findex.htm.
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Figure 6: ROC Curve, NAFTA Logit Analysis

Note that there is necessarily a tradeoff between true positives and false positives, but that
that tradeoff depends on the quality of the model at classifying outcomes. We can see this
tradeoff by picking a level/fraction of positives we wish to find, and then tracing out the
corresponding level of false positives the model will give us:

• If we chose Sensitivity = 0.50, then we can expect the model to have a false-positive
rate of roughly 0.12.

• If we increase the Sensitivity to 0.75, the corresponding false positive rate is about
0.24.

A “perfect” test – one that classified all the actual zeros as zeros, and the actual ones as
ones – would have an ROC curve that went up the left-hand side (at 1−Specificity = 0) and
then straight across the top (at Sensitivity = 1). Conversely, a model that did no better
than chance (i.e., a 50-50 model) would have an ROC that was a 45-degree line, since all
“true positives” would also have a correspondingly equal number of “false positives.”

This suggests a role for the area under the ROC curve (sometimes called the “aROC”). The
area under the ROC curve is necessarily bounded between 0.5 (the area of the <2 unit space
under the diagonal line) and 1.0 (for a test that perfectly predicts both positive and negative
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outcomes). The area measures discriminatory power of the model; the “better” the model
does at classifying both positive and negative outcomes, the higher the amount of area under
the ROC curve.

A mathematically identical (but somewhat more intuitive) interpretation of the area under
an ROC curve is as the average concordance between the model predictions and reality in
repeated sampling. In our example, imagine randomly picking one observation from the
pro-NAFTA voters, and one from the anti-NAFTA group. If the model is a good one, the
pro-NAFTA House member should have a higher predicted probability of voting for NAFTA
than the anti-NAFTA representative. The area under the ROC curve is the total percentage
of randomly drawn pairs for which this is true (that is, that the test correctly classifies the
two observations in the random pair).

Given this interpretation, it’s easy to see how the area under the ROC curve is useful as a
summary measure of model fit. A good set of rules of thumb for substantively interpreting
the area under the ROC curve is:

• Area under ROC = 0.90-1.00 → Excellent (A)

• Area under ROC = 0.80-0.90 → Good (B)

• Area under ROC = 0.70-0.80 → Fair (C)

• Area under ROC = 0.60-0.70 → Poor (D)

• Area under ROC = 0.50-0.60 → Total Failure (F)

By these criteria, our NAFTA model is a good-fitting model; by contrast, a model that
included only the pcthispc variable as a covariate fares much worse:

. logit vote pcthispc

Logistic regression Number of obs = 434

LR chi2(1) = 1.19

Prob > chi2 = 0.2748

Log likelihood = -298.8964 Pseudo R2 = 0.0020

------------------------------------------------------------------------------

vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

pcthispc | .0074779 .0069253 1.08 0.280 -.0060955 .0210513

_cons | .0919126 .1132522 0.81 0.417 -.1300576 .3138828

------------------------------------------------------------------------------

. predict hispxbeta, xb

. lroc, recast(connected) msymbol(smcircle) mcolor(black) msize(medsmall)
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Figure 7: ROC Curve, NAFTA Logit Analysis Using pcthispc Only

Given the interpretation of the area under the ROC curve described above, it seems like it
ought to be possible to do a formal statistical test of whether the areas under the ROC curve
for two different models are statistically differentiable or not. And, in fact, we can (and it’s
not even that hard). The mathematical details of how this is done depend on whether the
ROC (and thus the area under it) is calculated via trapezoidal approximation or using MLE;
we need not go into that too much here.

To accomplish the comparison, we can use the aptly-named -roccomp- (for “ROC compar-
ison”) command:
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Figure 8: Comparing ROC Curves, NAFTA Data

. roccomp vote xbeta hispxbeta, graph summary plot1opts(recast(connected)

msymbol(smcircle) mcolor(black) msize(medsmall)) plot2opts(recast(connected)

lcolor(black) lpattern(dash) msymbol(smtriangle) mcolor(black) msize(small))

legend(off)

ROC -Asymptotic Normal--

Obs Area Std. Err. [95% Conf. Interval]

-------------------------------------------------------------------------

xbeta 434 0.8500 0.0190 0.81283 0.88725

hispxbeta 434 0.5559 0.0273 0.50233 0.60948

-------------------------------------------------------------------------

Ho: area(xbeta) = area(hispxbeta)

chi2(1) = 64.51 Prob>chi2 = 0.0000

This tells us that we can confidently reject the null hypothesis that the area under the ROC
(and thus the predictive fit) of the two models is equal.
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A Few Final Things

Note that this summary hardly exhausts the possible approaches for interpreting binary-
response models. To mention just a few things we have not – thanks to the need for speed
– covered:

• Marginal Effects. That is,

∂Pr(Y = 1)

∂Xk

(11)

which, as we noted above, is not simply equal to β̂k. These can be a flexible, useful
way of discussing covariate effects; and, as it happens, there’s a simple post-estimation
command in Stata (-mfx-) for calculating them. Read up on that if it sounds interest-
ing.

• Additional Goodness-of-Fit Tests. These include those by Pearson, Hosmer and
Lemeshow (1989), and many others, as well as the standard LR, AIC, and BIC tests.

• Residual Analysis, including influence statistics, outlier detection, etc.

Next time: Models for funny-looking binary responses of various kinds...
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Appendix: Stata Commands for Figures 3 and 4

Figure 3

. twoway (mspline probhat cope93 if democrat==0, lcolor(black) lpattern(solid)

lwidth(thick)) (mspline U_prob cope93 if democrat==0, lcolor(black) lpattern(dash))

(mspline L_prob cope93 if democrat==0, lcolor(black) lpattern(dash)), ytitle(Predicted

Pr(Vote For NAFTA)) note(Republicans, size(large) position(2) ring(0)

margin(medlarge)) legend(off)

. graph save "GOPinsample.gph"

. twoway (mspline probhat cope93 if democrat==1, lcolor(black) lpattern(solid)

lwidth(thick)) (mspline U_prob cope93 if democrat==1, lcolor(black) lpattern(dash))

(mspline L_prob cope93 if democrat==1, lcolor(black) lpattern(dash)), ytitle(Predicted

Pr(Vote For NAFTA)) note(Democrats, size(large) position(7) ring(0) margin(large))

legend(off)

. graph save "DEMinsample.gph"

. graph combine "GOPinsample.gph" "DEMinsample.gph"

Figure 4

. twoway (rspike U_prob L_prob cope93 if democrat==0, lcolor(black) lpattern(solid))

(line Probhat cope93 if democrat==0, lcolor(black) lpattern(solid) lwidth(medthick))

(rarea U_prob L_prob cope93 if democrat==1, fcolor(gs8)) (line Probhat cope93 if

democrat==1, lcolor(black) lpattern(dash) lwidth(medthick)), ytitle(Predicted

Pr(Pro-NAFTA Vote)) xtitle(AFL-CIO COPE Score) legend(off)

graphregion(margin(vsmall))
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