
POLI 8501
Introduction to Maximum Likelihood Estimation

Maximum Likelihood

Intuition

Consider a model that looks like this:

Yi ∼ N(µ, σ2)

So:

E(Y ) = µ

V ar(Y ) = σ2

Suppose you have some data on Y , and you want to estimate µ and σ2 from those data. . .

The whole idea likelihood is the find the estimate of the parameter(s) that maximizes the
probability of the data.

Example: Suppose Y is income of assistant professors (in thousands of dollars), and we have
a random sample of five data points:

Y = 54

53

49

61

58

Intuitively, how likely is it that these five data points were drawn from a normal distribution
with µ = 100? (Answer: Not very likely)

What about µ = 55 (which happens to be the empirical mean of this sample)? (Hint: More
likely)

What maximum likelihood is, is a systematic way of doing exactly this.
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Think of the salaries as draws from a normal distribution.

We can write:

Pr(Yi = yi) =
1√

2πσ2
exp

[
−(Yi − µ)2

2σ2

]
(1)

This is the density, or probability density function (PDF) of the variable Y .

• The probability that, for any one observation i, Y will take on the particular value y.

• This is a function of µ, the expected value of the distribution, and σ2, the variability
of the distribution around that mean.

We can think of the probability of a single realization being what it is, e.g.:

Pr(Y1 = 54) =
1√

2πσ2
exp

[
−(54− µ)2

2σ2

]
Pr(Y2 = 53) =

1√
2πσ2

exp

[
−(53− µ)2

2σ2

]
etc.

Now, we’re interested in getting estimates of the parameters µ and σ2, based on the data...

If we assume that the observations on Yi are independent (i.e. not related to one another),
then we can consider the joint probability of the observations as simply the product of the
marginals.

Recall that, for independent events A and B:

Pr(A, B) = Pr(A)× Pr(B)

So:

Pr(Y1 = 54, Y2 = 53) =
1√

2πσ2
exp

[
−(54− µ)2

2σ2

]
× 1√

2πσ2
exp

[
−(53− µ)2

2σ2

]
More generally, for N independent observations, we can write the joint probability of each
realization of Yi as the product of the N marginal probabilities:

Pr(Yi = yi∀i) ≡ L(Y |µ, σ2) =
N∏

i=1

1√
2πσ2

exp

[
−(yi − µ)2

2σ2

]
(2)
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This product is generally known as the Likelihood [L(Y )], and is the probability that each
observation is what it is, given the parameters.

Estimation

Of course, we don’t know the parameters; in fact, they’re what we want to figure out. That
is, we want to know the likelihood of some values of µ and σ2, given Y .

This turns out to be proportional to L(Y |µ, σ2):

L(µ̂, σ̂2|Y ) ∝ Pr(Y |µ̂, σ̂2)

We can get at this by treating the likelihood as a function (which it is). The basic idea is
to find the values of µ and σ2 that maximize the function; i.e., those which have the greatest
likelihood of having generated the data.

How do we do this?

One way would be to start plugging in values for µ and σ2 and seeing what the corresponding
likelihood was...

E.g.: For µ̂ = 58 and σ̂2 = 1, we would get:

L =
1√
2π

exp

[
−(54− 58)2

2

]
×

1√
2π

exp

[
−(53− 58)2

2

]
×

1√
2π

exp

[
−(49− 58)2

2

]
×

1√
2π

exp

[
−(61− 58)2

2

]
×

1√
2π

exp

[
−(58− 58)2

2

]
= 0.0001338× 0.0000014× ...

= some reeeeeally small number...

More generally, we can graph the likelihood for these five observations (assuming, for the
moment, that σ2 = 1)...
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Figure 1: Likelihood of µ̂ for five sample data points

Note that the likelihood is maximized at µ = 55, the empirical mean...

But...

• ...likelihood functions often look scary,

• ...products are generally hard to deal with, and

• ...we run into issues with numeric precision when we get into teeeeny probabilities...

Fortunately, it turns out that if we find the values of the parameters that maximize any
monotonic transformation of the likelihood function, those are also the parameter values
that maximize the function itself.

Most often we take natural logs, giving something called the log-likelihood :
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lnL(µ̂, σ̂2|Y ) = ln

N∏
i=1

1√
2πσ2

exp

[
−(Yi − µ)2

2σ2

]

=
N∑

i=1

ln

{
1√

2πσ2
exp

[
−(Yi − µ)2

2σ2

]}

= −N

2
ln(2π)−

[
N∑

i=1

1

2
ln σ2 − 1

2σ2
(Yi − µ)2

]
(3)

If we again fix σ2 = 1 and consider this log-likelihood the same way we did above, we get
this figure...

Figure 2: Log-likelihood of µ̂ for five sample data points
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Maximization

Question: Graphs are nice, but how do we normally find a maximum?

Answer: Good old differential calculus...

What happens when we take the first derivatives of (3) with respect to µ and σ2?

∂lnL

∂µ
=

1

σ2

N∑
i=1

(Yi − µ)

∂lnL

∂σ2
=

−N

2σ2
+

1

2
σ4

N∑
i=1

(Yi − µ)2

If we set these equal to zero and solve for the two unknowns, we get:

µ̂ =
1

N

N∑
i=1

Yi

σ̂2 =
1

N

N∑
i=1

(Yi − Ȳ )2

...which are the basic formulas for mean and variance. That is, our standard versions of µ̂
and σ̂2 are the maximum likelihood estimators for µ and σ2.

MLE and the Linear Regression Model

Now suppose we want to set the mean of Y to be a function of some other variable X; that
is, you suspect that professors’ salaries are a function of, e.g., gender, or something. We
write:

E(Y ) ≡ µ = β0 + β1Xi

Var(Y ) = σ2

We can then just substitute this equation in for the systematic mean part (µ) in the previous
equations...

E.g.:

L(β0, β1, σ
2|Y ) =

N∏
i=1

1√
2πσ2

exp

[
−(Yi − β0 − β1Xi)

2

2σ2

]
(4)
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and:

lnL(β0, β1, σ
2|Y ) = ln

N∏
i=1

1√
2πσ2

exp

[
−(Yi − β0 − β1Xi)

2

2σ2

]

= −N

2
ln(2π)−

N∑
i=1

[
1

2
lnσ2 − 1

2σ2
(Yi − β0 − β1Xi)

2

]
(5)

With respect to the parameters {β0, β1, σ
2}, only the last term is important...

• The first one (−N
2
ln(2π)) is invariant with respect to the parameters of interest, and

so can be dropped.

• This is due to something called the Fisher-Neyman Factorization Lemma.

Thus, the kernel of the log-likelihood is:

−
N∑

i=1

[
1

2
lnσ2 − 1

2σ2
(Yi − β0 − β1Xi)

2

]
(6)

...which is the old familiar sums-of-squared-residuals term, scaled by the variance parameter
σ2.

This leads us to several interesting things:

• The least-squares estimator of the OLS βs is the maximum likelihood estimator as well.

• MLE is not confined to models with “ugly” dependent variables (though it is highly
useful for them).

For your homework for this week, you’re going to do exactly this: estimate linear regression
model using MLE...
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MLE and Statistical Inference

MLE is a very flexible way of getting point estimates of parameter(s) (say, θ) under a broad
range of conditions... It is also a useful means of statistical inference, since, under certain
regularity conditions, the estimates (and the distribution(s)1) of the MLEs will have nice
properties...

These nice properties include:

Invariance to Reparameterization

• This means that, rather than estimating a parameter θ, we can instead estimate some
function of it g(θ).

• We can then recover an estimate of θ (that is, θ̂) from g(θ).

• This can be very useful, as we’ll see soon enough...

Invariance to Sampling Plans

This means that ML estimators are the same irrespective of the rule used for determining
sample size. This seems like a minor thing, but in fact its very useful, since it means that
you can e.g. “pool” data and get “good” estimates without regard for how the sample size
was chosen.

Minimum Variance Unbiased Estimates

• If there is a minimum-variance unbiased estimator, MLE will “choose”/“find” it.

• E.g., the CLRM/OLS/MLE example above.

Consistency

This is a big one...

• MLEs are generally not unbiased (that is, E(θ̂MLE) 6= θ). But...

• They are consistent (E(θ̂MLE) →
a.s.

θ)

• This means that MLEs are large-sample estimators

◦ They are “better” with larger Ns

◦ How large? Well, that depends...

1Remember that estimates are, themselves, random variables; we use our understanding of those variables’
distributions to construct measures of uncertainty about our estimates (e.g. standard errors, confidence
intervals, etc.).
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Asymptotic Normality

• Formally, √
N(θ̂MLE − θ) ∼ N(0,Ω)

• That is, the asymptotic distribution of the MLEs is standard multivariate normal.

• Is a result of the application of the central limit theorem.

• This is true regardless of the distribution assumed in the model itself.

• Allows us to do hypothesis testing, confidence intervals, etc. very easily...

Asymptotic Efficiency

• As we’ll see in a few minutes, the variance of the MLE can be estimated by taking
the inverse of the “information matrix” (aka, the “Hessian”), which is the matrix of
second derivatives of the (log-)likelihood with respect to the parameters:

Iθ = E

[
∂2lnL

∂2θ

]
• Among all consistent, asymptotically Normal estimators, the MLE has the smallest

asymptotic variance (again, think CLRM here)...

• As a result, “more of the ML estimates that could result across hypothetical experi-
ments are concentrated around the true parameter value than is the case for any other
estimator in this class” (King 1998, 80).

All these things make MLE a very attractive means of estimating parameters...

MLE: How do we do it?

Assume we have a k × 1 vector of regression coefficients β that is associated with a set of
k independent variables X. The goal of MLE is to find the values of the βs that maximize
the (log)likelihood...

How do we do this?

• One way is to “plug in” values for (e.g.) β0, β1, etc. until we find the ones that
maximize the likelihood...

◦ This is very time-consuming, and dull...

◦ It is also too complicated for higher-order problems...
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• Since the likelihood is a function, we can do what we did for the linear regression
model: take the first derivative w.r.t. the parameters, set it to zero, and solve...

But...

• Some functions we’re interested in aren’t linear...

• E.g., for a logit model, when we take the derivative w.r.t. β and set it equal to zero,
we get:

∂lnL

∂β
=

N∑
i=1

XiYi −
N∑

i=1

exp(Xiβ)

1 + exp(Xiβ)

• As it turns out, these equations are nonlinear in the parameters...

• That is, we can’t just take the derivative, set it equal to zero, and solve for the two
equations in two unknowns in order to get the maximum.

• Instead, we have to resort to numerical maximization methods...

Numerical Optimization Methods

First, some truth in advertising: The numerical approaches I discuss here are only one way
of getting parameter estimates that are MLEs. Others include Bayesaian approaches (e.g.,
Markov-Chain Monte Carlo methods), derivative-free methods (such as simulated annealing),
and many others. A discussion of the relative merits of these approaches is a bit beyond what
I care to go into here. To the extent that most, if not all, widely-used software programs use
the numerical methods that follow, knowing something about what they are and how they
work is highly recommended.

The Intuition

• Start with some guess of β̂ (call this β̂0),

• Then adjust that guess depending on what value of the (log-)likelihood it gives us.

• If we call this adjustment A, we get:

β̂1 = β̂0 + A0

and, more generally,

β̂` = β̂`−1 + A`−1 (6)
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We want to move the vector β̂ to the point at which the value of the likelihood is at its
highest...

• This means we need to take into account the slope of the likelihood function at each
point...

• Intuitively, we do this by incorporating information from the gradient matrix (the
matrix of first derivatives of the (log-)likelihood w.r.t. the βs)

◦ If the gradient is positive, then:

· the likelihood is increasing in β̂, and so

· we should increase our estimate even more...

◦ If the gradient is negative, then:

· the likelihood is decreasing in β̂, and so

· we should decrease our estimate of β̂.

In this way, we “climb to the top” of the likelihood function...

• Once we get near the top, the gradient gets very close to zero (b/c the likelihood is
near its maximum).

• At this point, when the changes get small enough from one iteration to the next, we
simply stop, and evaluate our estimates.

The Gradient Matrix and “Steepest Ascent”

How do we use the information from the gradient matrix?

• Again, start with some guess of β̂ (call this β̂0).

• Then adjust that guess depending on what value of the (log-)likelihood it gives us.

The simplest way to update the parameter estimates is to specify Ak = ∂lnL
∂βk

.

• This yields:

β̂` = β̂`−1 +
∂lnL

∂β`−1

(7)

• That is, we adjust the parameter by a factor equal to the first derivative of the function
w.r.t. the parameters.

• Review Q: What does a first derivative do? (A: Tells us the slope of the function at
that point.)
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Figure 3: MLE: Graphical Intuition
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• So:

◦ If the slope of the function is positive, then the likelihood is increasing in β̂, and
we should increase β̂ even more the next time around...

◦ If the derivative is negative, then the likelihood is decreasing in β̂, and we should
“back up” (make β̂ smaller) to increase the likelihood.

◦ This general approach is called the method of steepest ascent (sometimes also
called steepest descent).

Using the Second Derivatives

Steepest ascent seems attractive, but has a problem... the method doesn’t consider how fast
the slope is changing. You can think of the matrix ∂lnL

∂βk
as the direction matrix – it tells us

which direction to go in to reach the maximum. We could generalize (6), so that we changed
our estimates not only in terms of their “direction”, but also by a factor determining how
far we changed the estimate (Greene calls this the “step size”):

β̂k = β̂k−1 + λk−1∆k−1 (8)

Here, we’ve decomposed A into two parts:

• ∆ tells us the direction we want to take a step in, while
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• λ tells us the amount by which we want to change our estimates (the “length” of the
step size).

To get at this, we need to figure out a way of determining how fast the slope of the likelihood
is changing at that value of β̂...

First, let’s consider the usual approach to maximization...

• Once we’ve solved for the maximum (first derivative), we use the second derivative to
determine if the value we get is a minimum or maximum...

• We do this, because the 2nd derivative tells us the “slope of the line tangent to the
first derivative;” i.e., the direction in which the slope of the function is changing.

• So, if the second derivative is negative, then the slope of the first derivative is becoming
less positive in the variable, indicating a maximum.

• It also tells us the rate at which that slope is changing:

◦ E.g., if its BIG, then the slope is increasing or decreasing quickly.

◦ This, in turn, tells us that the slope of the function at that point is very steep.

Now think about our likelihood example of the mean again, but compare it to another
function with the same maximum...

• For red line, the function is flatter; the first derivative is negative, while the second
will be quite small.

• For the blue line, the second derivative will be quite a bit larger, because the value of
the likelihood is changing rapidly depending on the values of β̂.

This shows that the second derivative illustrates the speed with which the slope of the func-
tion is changing.

In likelihood terms, we want to somehow incorporate this second derivative into the maxi-
mization routine:

• If the function is relatively “steep”, we don’t want to change the parameters very much
from one iteration to the next.

• OTOH, if it is flat, we can adjust the coefficients more from one step to the next.
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Figure 4: Two Likelihood Functions, with Differing Rates of Change

Two Likelihoods: Same Maximum, 
Same First Derivative, Different
Second Derivatives 

To incorporate this, we can use three possibilities:

• The Hessian:

∂2lnL

∂β∂β′ (9)

◦ This is the second derivative of the likelihood function with respect to the param-
eters.

◦ This k × k matrix contains the second derivatives along the main diagonal, and
the cross-partials of the elements of β̂ in the off-diagonal elements.

In some cases, figuring out this second derivative can be really hard, to the point of being
impracticable. Two alternatives to this are:

• The information matrix :

− E

[
∂2lnL

∂β∂β′

]
(10)

◦ This is the negative of the expected value of the Hessian.
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◦ It can be easier to compute than the Hessian itself, in some cases.

◦ Yields a similar kind of result (tells how quickly the slope is changing...)

• If even the information matrix is too hard to compute, we can also use the outer product
approximation to the information matrix:

N∑
i=1

∂lnLi

∂β

∂lnLi

∂β

′
(11)

◦ That is, we sum over the “squares” (outer products) of the first derivatives of the
log-likelihoods.

◦ This is nice because we don’t have to deal with the second derivatives at all; we
have only to evaluate the gradient.

◦ This can be really useful when we have very complex likelihoods

Optimization Methods

Each of these options for incorporating the “rate of change” has an associated maximization
algorithm associated with it...

1. Newton-Raphson uses the (inverse of the) Hessian:

β̂` = β̂`−1 −

( ∂2lnL

∂β̂`−1∂β̂
′
`−1

)−1
∂lnL

∂β̂`−1

 (12)

• I.e., the new parameter estimates are equal to the old ones, adjusted in the direc-
tion of the first derivative (a la steepest descent), BUT

• The amount of change is inversely related to the size of the second derivative.

◦ If the second derivative is big, the function is steep, and we don’t want to
change very much.

◦ The opposite is true if the second derivative is small and the slope is relatively
flat.

2. Method of Scoring uses the (inverse of the) information matrix:

β̂` = β̂`−1 −

[
E

(
∂2lnL

∂β̂`−1∂β̂
′
`−1

)]−1
∂lnL

∂β̂`−1

(13)
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3. Berndt, Hall, Hall and Hausman (BHHH) uses the inverse of the outer product
approximation to the information matrix:

β̂` = β̂`−1 −

(
N∑

i=1

∂lnLi

∂β`−1

∂lnLi

∂β`−1

′
)−1

∂lnL

∂β̂`−1

(14)

There are others...

• E.g., the “Davidson-Fletcher-Powell” (DFP) algorithm, in which the “step length” is
chosen in such a way as to always make the updated matrix of parameter estimates
positive definite.

• See Judge et al. (Appendix B) or Greene (2003, Appendix E.6) for more discussion...

MLE, Uncertainty and Inference

Since the matrix of second derivatives tells us the rate at which the slope of the function is
changing (i.e., its “steepness” or “flatness” at a given point), it makes sense that we can use
this information to determine the variance (“dispersion”) of our estimate...

• If the likelihood is very steep,

◦ We can be quite sure that the maximum we’ve reached is the “true” maximum.

◦ I.e., the variance of our estimate of β̂ will be small.

• If the likelihood is relatively “flat,” then

◦ We can’t be as sure of our “maximum,” and...

◦ so the variance around our estimate will be larger.

Maximum likelihood theory tells us that, asymptotically, the variance-covariance matrix of
our estimated parameters is equal to the inverse of the negative of the information matrix:

Var(β̂) = −

[
E

(
∂2lnL

∂β̂∂β̂
′

)]−1

(15)

As above, we can, if need be, substitute the outer product approximation for this...

Typically, whatever “slope” (i.e., second derivative) matrix a method uses is also used for
estimating the variance of the estimated parameters:
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Method “Step size” (∂2) matrix Variance Estimate
Newton Inverse of the observed Inverse of the negative

second derivative (Hessian) Hessian
Scoring Inverse of the expected Inverse of the negative

value of the Hessian information matrix
(information matrix)

BHHH Outer product approximation Inverse of the outer
of the information matrix product approximation

There are a few other alternatives as well (e.g., “robust” / “Huber-White” standard errors);
we’ll talk more about those a bit later on.

General comments on Numerical Optimization

• Newton works very well and quickly for simple functions with global maxima.

• Scoring and BHHH can be better alternatives when the likelihood is complex or the
data are ill-conditioned (e.g. lots of collinearity).

Software issues

• Stata uses a modified version of Newton (“Quasi-Newton”) for the -ml- routine that
makes up most of its “canned” routines.

◦ Requires that it have the gradient and Hessian at each iteration...

◦ Uses numeric derivatives when analytic ones aren’t available.

◦ This can be slow, since at actually calculates the inverse Hessian at each step,
BUT

◦ ...it also tends to be very reliable (more so than some other packages).

◦ Stata doesn’t allow for scoring or BHHH options.

• S-Plus / R have -glm- routines which default to the method of scoring (or IRLS – more
on that later).

• In LIMDEP (and a few others, like GAUSS) you can specify the maximization algorithm.

• Some programs (e.g. LIMDEP) also allow you to start out with steepest ascent, to get
“close” to a maximum, then switch to Newton or BHHH for the final iterations.
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Practical Tips

• One can occasionally converge to a local minimum or maximum, or to a saddle point.

• Estimates may not converge at all...

• If convergence is difficult, try the following:

◦ Make sure that the model is properly- (or, at least, well-)specified.

◦ Delete all missing data explicitly (esp. in LIMDEP).

◦ Rescale the variables so that they’re all more-or-less on the same scale.

◦ If possible, try another optimization algorithm.
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