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Heterogeneity, Contagion, and Overdispersion—Oh My!

Event count models are similar to some of our earlier models (e.g. logits and probits) in that
they can be characterized as a realization of a latent process. In the event count case, what
is latent is the rate at which events occur.

An example I like to use is watching for animals. Suppose that, having nothing better
to do, we decide to count the number of cats that wander through our backyard in a
day (or Emus or Walruses depending on where you live). Over two weeks, we observe
Yeats = {0,1,1,0,2,0,1,0,3,1,2,1,0,2}; this yields Y = 1.0, 0cars = 0.92.

Now suppose there is some underlying rate at which the events occur, such that we’d expect
some number of cats to pass through on a particular day; call this rate A\.ats. We're interested
in the probability that we observe {0,1,2,3,...} cats per day. To figure out this probability,
we might make four assumptions about the process generating the events (cats):

1. Zero events have occurred at the beginning of the period.

2. More than one event can’t occur at the same time (in the cat case, this may be a bit
hard to swallow, but in other examples, it isn’t...)

3. The periods are all of the same length. (This actually isn’t all that critical, as we
discussed earlier...).

4. The probability of an event occurring is constant within a particular period, and inde-
pendent of other events during the same period. This assumption is critical, as we’ll
soon see...

If these assumptions hold, then the number of events observed in a particular period is a
Poisson process:

_ eXp(;!)\)Ay (1)

for A > 0 and y € {0,1,2,...}. The parameter X is the unobserved “rate” of occurrence; it
is also the expected value of the variable Y [i.e., E(Y) = A]. We usually use an exponential
“link” function to allow the mean to vary according to some set of independent variables

[i.e., A\; = exp(X;3)]. This yields the log-likelihood:
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InL =Y {-exp(X;B) + ¥;X;8 — In(V;l)} (2)

i=1
where the last term is often (but not always) dropped, since it doesn’t vary in 3

The last, two-part assumption we made is critical to what the event count data generated
will “look like”...

e The first assumption is about the independence of events.
e The second assumption requires a constant rate of event occurrences.

We'll consider each of these in turn...

Independence and Contagion: Antelope and Foxes
Antelope

Now suppose that, instead of cats, we're observing antelope. Antelope are herd animals:
where you see one, you’ll likely see more. This fact suggests that counts of antelope will
probably violate the independence assumption, that the occurrence of one event has no effect
on the likelihood of observing additional events in the same period. For antelope, one event
increases the likelihood of another; this is an example of positive contagion.

What’s the effect of this positive contagion? The answer is that we’ll have greater numbers
of higher and low counts...

e We might go nearly two weeks without seeing any, then see seven each on the last two
days (when a herd wanders through our neighborhood)

e So, we'd observe Yy iei0pe = {0,0,0,0,0,0,0,0,0,0,0,0,7,7}.
e This count is also ?antelope = 1.0, but has o4nteiope = 6.46.

The point: Positive contagion increases the variance of the observed counts, even if it does
not affect the mean; this is known as overdispersion.

But, we already know that for the Poisson, E(Y) = Var(Y) = A. So, if we fit a Poisson model
to the antelope data, we’ll be imposing the (incorrect) mean-variance equality restriction on
the estimation. As a result,

o We'll effectively be requiring the variance to be less than it really is.
e The consequence is that we will underestimate the true variability in the data.

e This will lead us to underestimate our standard errors, and so to overestimate the
degree of precision in our coefficients.



Foxes

Now suppose we're observing foxes instead. Foxes are territorial animals; seeing one fox
means its unlikely you’ll see another (different) fox any time soon. This means that the
occurrence of one event decreases the probability of another event in the same period (and
so also violates the independence assumption). This phenomenon is called negative con-
tagion...

What’s the effect of negative contagion?

e Negative contagion will yield greater numbers of counts right around the mean; this is
known as underdispersion.

e E.g., in counting foxes for two weeks, we might see: Yy,.es = {1,0,1,1,1,1,1,2,1,1,1,1,1,1}.

® Yiopes also has Yigges = 1.0, but has 0foees = 0.15 — that is, less variability than for an
independent (Poisson) process.

Fitting a Poisson model to these data imposes E(Y) = Var(Y) = Apzes. This means that
doing so will artificially overestimate the variability in Yj,.es, and lead us to overestimate
the standard errors, and underestimate our precision/confidence in the model parameters.

The larger point is that the mean-variance equality restriction of the standard Poisson dis-
tribution is a direct result of the assumptions we make ab out the process generating the
events.

Cross-Period Effects

Over and above the issue of event arrivals within observation periods, note as well that, if
our “time periods” are arbitrary, then contagion (positive or negative) within observations
also implies contagion across observations. As a result — and by the same logic — contagion
across observations can also lead to over- or under-dispersed data, relative to the Poisson.

As an example, consider the data above if we aggregate our counts to two-day periods. We
then have data that look like:

Years = {1717271747372}
}/antelope = {O, O, 07 0, O, O, 14}
on:]ces = {1727273727272}

Again, the mean of each variable is the same (2.0), but the variances are very different.
Moreover, we can think of the contagion that (previously) was “within” a period, and now
see that it also operates “across” periods.



Heterogeneity

The discussion of event dependence ignores the second Poisson event assumption: that of
constant event arrival rates. The assumption that rates are constant implies that rates are
uniform within time periods; i.e., that all micro- “events” have equal probability. If the ob-
served count is made up of aggregates of multiple units, this is unlikely to be the case.

For example, Wawro talks about heterogeneity in counts of Presidential vetoes during a Con-
gressional session. If a President is more likely to veto bills (say) early in a session (when
s/he can do so to make political hay) than later in the session (when appropriations, etc.
need to be passed), then the assumption of a constant within-period rate A is violated.

The assumption of constant rates also gives rise to a second (implicit) belief about the data:
that, conditional on any covariates X, the value of X is the same across observations. Put
differently, this means that (in a regression context) all of the systematic influences on the
event arrival rate A are included in X3, so that only (constant) random noise remains. We
term this unobserved heterogeneity, and can think of this as equivalent to:

e Assuming that the model is “correctly” specified (i.e., as a specification matter), or

e Assuming that the non-systematic variance in Y is truly “random” (that is, an as-
sumption about the implicit “errors”), or

e Assuming that the conditional (on X and 3) expectation of Y is constant.

Unobserved heterogeneity of this type also leads to overdispersion (that is, E(Y') < Var(Y)),
of a form exactly the same as that for positive contagion outlined above. Intuitively, this is
because the non-constant rate induces greater random variability in Y than would a constant
A. To illustrate this, suppose we have a model like:

i = E(Y;) = f[XiB + Zi0)] (3)

and where we fail to include Z as a relevant covariate. So long as 6 # 0, the result will be
that some observations will have different (conditional on X) values of A than will others —
that is, that the data will contain heterogeneity.

Summing Up

Formally, recall that the Poisson model requires that E(Y;) = Var(Y;) = \;. Consider relaxing
the mean-variance equality restriction, by saying that Var(Y) = A\;o. Then, in general, we
can think of three situations:

Var(Y) < o=1
Var(Y) < o>1
Var(Y) < 0<o <1

Poisson Dispersion « E(Y)
Overdispersion « E(Y)
Underdispersion < E(Y)

VoA
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Generally, political science data are not Poisson distributed, even conditionally. We typically
study dependent processes (vs., say, engineers or physicists), and we regularly fail to measure
stuff, leading to unobserved heterogeneity. Or, at best, we measure it badly (and, in fact,
measurement error in right-hand-side variables also yields overdispersion — see Prentice 1986).

Dealing with Over- and Underdispersion
Overdispersion

Overdispersion is much more common in political science settings (and, in fact, in nearly
all others as well) than is underdispersion. Moreover, in most instances where we have
covariates X;, what we really care about is conditional over- or underdispersion; that is,
over- or underdispersion in the errors/residuals.

A Test for Overdispersion

It seems we ought to be able to test for overdispersion pretty easily — just estimate a Pois-
son model, and then see whether the (squared) “errors” have a variance that is statistically
different from ;.

Formally, this test is just a t-test for 6 =0 in the equation:

where
Y- AP Y
Aiv/2
and ), is the predicted value of \; for observation 7 (that is, exp(X;8) from the Poisson
regression). This test thus has three steps:

~

1. Estimate a Poisson regression of Y; on X;, and generate predicted counts \;.
2. Calculate u; according to (5), above.

3. Estimate (4) using OLS, and test Hy : 6 = 0.

We'll illustrate an example of this in a bit. For now, I should mention that there are a bunch
of other tests for overdispersion, including LM and Wald tests based on the negative binomial
model (see below). Cameron and Trivedi (1998, §3.4 and 5.6) gives a good discussion of these.



Models for Overdispersed Counts

Intuitively, to address the idea of heterogeneity, we can just drop the assumption that the
rate \; is constant within an observation, and instead make it a random variable. The
result is that we have the usual conditional Poisson variate, but with a random error term.
Formally, we simply specify that

EY) =X = exp(XiB+w)
= exp(X;B) exp(u;)
o ©)

With this approach, we then have to specify the distribution of u; in order to identify the
model. We could (in theory) use a lot of different distributions, but we usually use the
Gamma, for two reasons:

1. Is a natural one for variability, since its nonnegative, and

2. Tt leads to a nice (if complicated) closed-form solution.

If the vs in (6) are assumed to be randomly distributed according to a one-parameter Gamma

distribution with mean E(r) = 1 and variance Var(v) = 62 = 1, then the marginal density
of Y is negative binomial:
T(a ' +Y) a b O\ N\
Pr(Y; = ylhia) = R 7
"=yl o) (F(al)F(YH—l)) (al DY Ntal @)

where I' is the gamma function:

I'(a) = /0 " exp(—t)teldt

As before, we again typically model \; = exp(X;3). This model has E(Y') = A, just like the
Poisson, but Var(Y) = A(1 +al), a > 0.

e Thus, the variance is allowed to be greater than the mean, but...

e ... the variance is still (positively) dependent on the mean (i.e., heteroscedastic), as we
would hope for an event-count variate.

e Intuitively, larger values of a correspond to greater amounts of overdispersion.

Note as well that the model reduces to the Poisson when a@ = 0. Cameron and Trivedi
call this the “NB2” model, since it can also be expressed as Var(Y) = A + aA\?. With
i = exp(X;03), we get the log-likelihood:



InLyp = Z{ (i In(j + Ozl)> —InY;! — (V; —a Y In[l + aexp(X;3)]
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To summarize: If we assume an event count process with gamma heterogeneity in the rate
of event arrivals, the resulting event count will follow a negative binomial distribution. This
means that:

e The variance is always larger than the mean.

e When o = 0, then E(Y) = Var(Y) and the negative binomial model reduces to the
Poisson.

e Because « is restricted to be greater than 0, most programs (e.g. Stata) actually
estimate either X or In(2).

e This also suggests an easy likelihood-ratio test for overdispersion: Simply estimate
Poisson and negative binomial models, and then calculate —2 x (In L/p;%(m — lm);
this test is distributed x?%; larger values of the test reject the null hypothesis of no
overdispersion. (Note as well that a t-test of & = 0 will, asymptotically, give the same
results).

Finally, the model remains log-linear; moreover, we still have m =)\ = exp(XiB).
This means that the IRR and predicted count approaches to interpretation remain open to
us. Likewise, while we probably wouldn’t want to do it “by hand,” we can also calculate
predicted probabilities for discrete counts, conditional on X; and B (Stata and most other
software will do this for us...).

Underdispersion

A similar type of distribution to the NB, the “continuous parameter binomial” (CPB), is used
to model underdispersed data (that is, data that have negative contagion). Not surprisingly,
this is a variant of the binomial distribution which is “scaled” to insure that its probabilities
sum to 1.0. The density for the CPB model is:

r(e24+1) Yi(g)azt—Yi
Yi!F(;—_Ai—YH-l)(l_a) ()=t

Pr(Y; = y|\i, o) = D (9)

where D; is the aforementioned scaling factor and is equal to nothing more than the sum
from 0 to ;—:\i + 1 of the binomial distribution, above. This model:



Figure 1: Maximum Possible Values of Y as a Function of A\, for Three Values of « in the
CPB Distribution.
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e also has E(Y;) = \; [again, typically with u; = exp(X;0)], but
e has Var(Y) = \;a with 0 < o < 1. In addition,
e it also reduces to the standard Poisson when o = 1.

Note also that the CPB distribution imposes a theoretical “upper limit” on the count vari-
able. In particular,

)\
a—1"
This limit is due to the fact that the variability of Y is constrained by «; as a — 1.0, the
upper limit disappears (i.e., goes to infinity). Figure 1 presents potential maximum values
of Y as a function of A for varying values of o in the CPB distribution.

max(Y;) =

(10)

The log-likelihood for the CPB model above is:

a ~ )\ ~ )\
InLepy = Z{lnF e Rl N G

=1

+Y;In(1 — a) + (@_j‘il _ Y;) In(a) — ln(Di)} (11)
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Practical Stuff

In practice, underdispersed data are pretty rare (though not as rare as some would have you
believe). Also, for Stata users, I should mention that Stata will estimate negative binomial
models, but not CPB ones.

Another point that bears repeating is that, as I noted above, when speaking of over— or
underdispersion, we usually mean conditional on the effects of the independent variables [i.e.
Var(Y;|X;, B)]. When we introduce covariates, we are factoring out some of the heterogeneity
in the data (that is, it is no longer unobserved, but now part of the systematic part of the
model). So, as model specification gets better, we often see our data go from overdispersed,
to Poisson, to underdispersed. (There’s a nice example of this in the Stata 9 manuals, under
the heading -poisson-).

A Quick Illustrative Example

Consider some data on Supreme Court decisions during the Warren and Burger Courts
(1953-1985 Terms). We'll act like we have data on three variables:

e namici is the number of amicus curiae briefs filed in each case,
e term is the term (i.e., year) of the court,

e civlibs is whether (=1) or not (=0) the case involved a civil rights and liberties issue.
The data look like this:

. summ namici term civlibs

Variable | Obs Mean  Std. Dev. Min Max
_____________ +_____________________________________________________
namici | 7161 1.025136 2.544066 0 53

term | 7157 71.12114 9.194212 53 85

civlibs | 7161 .5009077 .5000341 0 1

The mean count is a bit over 1.0, but there are also lots of zeros (in fact, nearly 69 percent
of the cases had no briefs filed at all) and a very small number of cases with high numbers
of briefs; this is consistent with overdispersion (note that the variance of the raw counts is
6.47, substantially higher than its mean). Our expectation is that both term and civlibs
will have a positive influence on the number of amicus briefs filed in each case.

We'll start with a Poisson model:



. poisson namici term civlibs

Poisson regression

Log likelihood = -13427.959

namici Coef. Std. Err. z
term .0636112 .00147 43.27
civlibs -.2979656 .0234971 -12.68
_cons -4.511961 .1119035 -40.32

. poisson, irr

Poisson regression

Log likelihood = -13427.959

7157
2199.42
0.0000
0.0757

namici IRR Std. Err.
term 1.065678 .0015666
civlibs . 7423269 .0174425

Number of obs = 7157
LR chi2(2) = 2199.42
Prob > chi?2 = 0.0000
Pseudo R2 = 0.0757
P>|z| [95% Conf. Intervall
0.000 .06073 .0664923
0.000 -.344019 -.2519122
0.000 -4.731288 -4.292634
Number of obs =
LR chi2(2) =
Prob > chi?2
Pseudo R2 =
z P>|z]| [95% Conf
43 .27 0.000 1.062612
-12.68 0.000 .7089154

1.068753
L777313

These results indicate that, at least in these data,

e the average numbers of amicus briefs filed in Supreme Court cases increased during

the 1953-1985 period, but

e cases involving civil rights and liberties issues actually have fewer amicus briefs filed

than do other sorts of cases.

Looking at the incidence rate ratios, the latter effect says that each term saw an average
increase in the expected number of amicus briefs of about six-and-a-half percent, and that
civil liberties cases have only about 74 percent of the expected number of amici filed as do

other cases.
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We can implement the test for overdispersion outlines in (4) “by hand”:

. predict Poissonhat
(option n assumed; predicted number of events)
(4 missing values generated)

. gen uhat

= ((namici - Poissonhat) "2 - namici) / (Poissonhat * (sqrt(2)))
(4 missing values generated)

. regress uhat Poissonhat

7157
6.14
0.0132
0.0009
= 0.0007

= 28.418

2.625316

Source | SS df MS Number of obs
————————————— b F( 1, 7155)
Model | 4959.86151 1 4959.86151 Prob > F
Residual | 5778317.78 7155 807.591584 R-squared
————————————— it Adj R-squared
Total | 5783277.65 7156 808.171834 Root MSE
uhat | Coef Std. Err t P>|t]| [95% Conf.
_____________ +_______________________________________________________
Poissonhat | 1.465829 .591486 2.48 0.013 .3063417
_cons | 1.579188 .6934805 2.28 0.023 .2197611

2.938615

Here, if the data are conditionally Poisson-distributed, the estimated coefficient on Poissonhat
should equal zero. We can reject that hypothesis quite confidently (at around p = .01), and
the fact that the estimate is greater than zero tells us that overdispersion is likely in the
data. Accordingly, we would next estimate a negative binomial model:

. nbreg namici term civlibs

Negative binomial regression Number of obs = 7157
LR chi2(2) = 441 .86

Prob > chi2 = 0.0000

Log likelihood = -8685.0839 Pseudo R2 = 0.0248
namici | Coef. Std. Err. z P>|z| [95} Conf. Interval]
_________ +__________________________________________________________
term | .0657306 .0030845 21.31 0.000 .059685 .0717761
civlibs | -.2677686 .0638811 -4.97 0.000 -.3733737 -.1621635
cons | -4.683137 .2242108 -20.89 0.000 -5.122582  -4.243692
_________ +__________________________________________________________



/lnalpha | 1.360013 .0326324 1.296054 1.423971
_________ +__________________________________________________________

alpha | 3.896243 .1271439 3.654848 4.153583

LR test of alpha=0: chibar2(01) = 9485.75 Prob>=chibar2 = 0.000
Note a few things about these results:

e Stata estimates In(«), rather than «; this is because @ = 0 is a boundary condition.
(Because one can think of « as the variance of the individual-specific heterogeneity
parameter v;, « is necessarily greater than or equal to zero; it can never be negative).

e The NB model strongly indicates overdispersion — the estimate & is 3.89, vastly different
from zero. The LR test — which, given the boundary condition, is a better test to use
than a t-test — clearly rejects the Poisson in favor of the NB.

e Despite all that, the coefficient estimates for B don’t change all that much, nor do the
model predictions (see Figure 2).

Figure 2: Predicted Vs: Poisson vs. Negative Binomial
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e What does change are the standard errors — those for the NB model are 2-3 times those
for the Poisson. This is consistent with the fact that, in the presence of overdispersion,
the Poisson model will tend to underestimate one’s standard errors. This last fact can
be seen in the estimated standard errors and confidence intervals for the predictions
(Figure 3), which are substantially larger for the negative binomial predictions (the
solid bars) than for the Poisson model (the shaded area).

Figure 3: Predicted 95% Confidence Intervals: Poisson vs. Negative Binomial
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Taking it a step further, we might want to see if the extent of overdispersion changes over
time, or if there is more or less overdispersion in civil liberties cases than in others. To do
this, we’ll estimate a variance-function negative binomial model:
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. gnbreg namici term civlibs, lna(term civlibs)

Generalized negative binomial Number of obs = 7157
regression LR chi2(2) = 401.80
Prob > chi2 = 0.0000

Log likelihood = -8664.5025 Pseudo R2 = 0.0227
namici Coef. Std. Err. z P>|z]| [95% Conf. Intervall]

I
+
I
term | .0658922 .0031151 21.15 0.000 .0597868 .0719977
civlibs | -.2747653 .0545366 -5.04 0.000 -.381655 -.1678755
_cons | -4.691456 .2290076 -20.49 0.000 -5.140302 -4.242609

+

I

I

I

I

lnalpha
term | -.0138852 .0040337 -3.44 0.001 -.0217912 -.0059792
civlibs .3652729 .0649148 5.63  0.000 .2380422 .4925035
_cons 2.221755 .3030342 7.33 0.000 1.627819 2.815691

Note a few things about this model:

e An LR test versus the single-parameter NB model yields —2(—8685.08 — (—8664.50)) =
41.16, which is ~ x2 and yields p < .0001. This suggests that the “generalized” model
fits significantly better than the single-parameter NB model.

e We also find that

o The term variable has a negative effect on the dispersion of the event count — this
might be because (e.g.) we do a “better job” of explaining event counts later in
the data (i.e., there is less unobserved heterogeneity in later terms) or because
there is less positive contagion in later terms — perhaps because allied groups are
coordinating more.

o Conversely, civlibs has a positive effect on the variance of the counts — civil
liberties cases have higher variances (that is, greater extra—Poisson variance) than
do other sorts of cases.

Both of these findings are illustrated in Figure 4, which plots the (out-of-sample)
predicted conditional variance & for both civil liberties and non-civil liberties cases
across the range of values for term. (In theory, one could use -predict ..., stdplna-
to get standard errors — and therefore confidence intervals — around these predictions,
but for some reason that command is not working. I have an e-mail in to the Stata folks
to find out what’s up with that...).
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Figure 4: Predicted Values of &, by term and civlibs
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Finally, a key point is the following: This example is a badly underspecified model, so we're
on dangerous ground attributing the variance effects to any one mechanism. In general, the
better specified one’s model, the less heterogeneity — and, therefore, overdispersion — one
will have to worry about.
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