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Models for Event Count Data, I

An Introduction to Count Data

Event count models are models where the dependent variable is a count of events. So, we’re
considering a variable Yi where Y ∈ 0, 1, 2, .... Event count variables are thus nonnegative
integers - bounded at zero below, unbounded above.

Note a couple things that aren’t count data:

• Ordinal Data

◦ Items such as Likert scales may look like event counts, but they aren’t...

◦ Use ordered logit/probit instead.

• Grouped binary data

◦ Data which are the number of “successess” (or failures) out of some known number
of binary trials.

◦ E.g.: the number of successful veto overrides in each Congress, or the number of
failed coup attempts in a given nation.

◦ Grouped binary data can be expressed as event counts, but are not event counts.

· One should (generally) not use event count models for grouped binary data.

· The exception is when there are relatively few successes, relative to the pos-
sible number of trials (see below).

Event counts have a few interesting properties that can make them hard to deal with. In
particulary, they are:

• discrete (meaning they can only take on integer values), and (as noted above)

• strictly nonnegative.

both of these things can make using OLS on event counts a bad idea; King (1988) tells how
and why, specifically. In general, using OLS to model event counts yields estimates which
are:

• inaccurate (for example, OLS can yield negative predicted counts), and

• inefficient (because they fail to account for the heteroskedastic nature of event counts-
more on this in a bit...)

1



Event Count Data: Motivations

Count Data and Poisson Processes

A good place to start thinking about event count data is with an abstract model of event
counts. Suppose we are interested in studying events, and that those events occur over time.
We might consider the constant rate at which events occur; call this rate λ. It’s useful to
think of λ as the expected number of events in any particular time “period” of length h.
Imagine further that the events in question are independent ; that is, the occurrence of one
event has no bearing on the probability that another will occur.

If the process that gives rise to the events in questions (what we’ll call the event process)
conforms to these assumptions, then it’s pretty straightforward to show that as the length
of the interval h → 0,

• The probability of an event occurring in the interval (t, t + h] = λh

• The probability of no event occurring in the interval (t, t + h] = 1− λh

Such a variable is what is known as a Poisson process : events occur independently with a
constant probability equal to λ times the length of the interval (that is, λh).

Next, consider our outcome variable Yt as the number of events that have occurred in the
interval t of length h. For such a process, the probability that the number of events occurring
in (t, t + h] is equal to some value y ∈ {0, 1, 2, 3, ...} is:

Pr(Yt = y) =
exp(−λh)λhy

y!
(1)

If all the intervals are of the same length (and equal to 1), this reduces to:

Pr(Yt = y) =
exp(−λ)λy

y!
(2)

This is the way we typically see the Poisson distribution written. By this logic, the Poisson
distribution is the limiting distribution for the number of independent (Poisson) events oc-
curring in some fixed period of length h (for Eq. 1) or 1 (for Eq. 2).

The assumptions underlying the event process – constant arrival rates, and independence
across events – are key to deriving the Poisson distribution in this way. If we relax these
assumptions (as we’ll do next week), the resulting distribution(s) are not Poisson. We’ll
return to this point later in the course.

2



Other Motivations

There are many other ways of motivating the Poisson distribution. For example, we can
think of the Poisson as the distribution for counts of “rare events.” Consider a large number
of Bernoulli (binary) trials, where the probability of an event in any one trial is small. In
such a situation, the total number of events observed will follow a Poisson distribution.

Formally, for M independent Bernoulli trials with (sufficiently small) probability of success
π and where Mπ ≡ λ > 0,1 the probability of observing exactly y total “successes” as the
number of trials grows without limit is:

Pr(Yi = y) = lim
M→∞

[(
M

y

) (
λ

M

)y (
1− λ

M

)M−y
]

=
λye−λ

y!

This was actually the original derivation of the Poisson distribution (by – who else? –
Simeon-Denis Poisson, back in 1837). Cameron and Trivedi (1998, Ch. 1) call this the “Law
of Rare Events” motivation for the Poisson distribution; see their book for other ways to
motivate the Poisson.

The Poisson Distribution: Characteristics

What is this odd thing we call the Poisson distribution, anyway? The Poisson distribution
has several important traits:

• It is a discrete probability distribution, with support on the non-negative integers.

• The “rate” λ can also be interpreted as the expected number of events during an
observation period t. In fact, for a Poisson variate Y , E(Y ) = λ.

• As λ increases, several interesting things happen:

1. The mean/mode of the distribution gets bigger (no shock there).

2. The variance of the distribution gets larger as well. This also makes sense: since
the variable is bounded from below, its variability will necessarily get larger with
its mean. In fact, in the Poisson, the mean equals the variance (that is, E(Y ) =
Var(Y ) = λ).

3. The distribution becomes more Normal-looking (and, in fact, becomes more Nor-
mal, period).

All of these things are illustrated in Figure 1.
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Figure 1: Empirical Poisson Variates, with Varying λs

Note as well that the Poisson distribution...

• ...is not preserved under affine transformations – that is, affine transformations of
Poisson variates are not themselves (necessarily) Poisson variates as well.

• ...is preserved under addition (convolution) provided that the components are inde-
pendent. That is, for two Poisson variates X ∼ Poisson(λX) and Y ∼ Poisson(λY ),
Z = X + Y ∼ Poisson(µX+Y ) iff X and Y are independent. (See e.g. Winkelmann
1997, Chapter 2 for proofs). However,

• ...the same is not true for differences of Poisson variates; see Johnson et al. (2005),
§4.12.3 for details.

We could talk more about the Poisson distribution’s interesting history, but . . . let’s not.

1Formally, holding λ constant as M →∞ requires that π → 0.
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The Poisson Regression Model

If we assume our event count is distributed according to a Poisson distribution, then the
next thing we probably want to know is the effect of covariates Xi on (the expected value
of) Yi. Since we know that E(Y ) > 0, we need to restrict the “link” to be positive; the
exponential is the standard one for this.

So, we have

E(Yi) ≡ λi = exp(Xiβ) (3)

Incorporating this into Eq. (2), this yields a probability model that looks like:

Pr(Yi = y|Xi, β) =
exp[− exp(Xiβ)][exp(Xiβ)]y

y!
(4)

Making the usual assumptions about the conditional independence of our N observations,
(4) then yields a pretty simple likelihood:

L =
N∏

i=1

exp[− exp(Xiβ)][exp(Xiβ)]Yi

Yi!
(5)

and an equally simple log-likelihood:

ln L =
N∑

i=1

{− exp(Xiβ) + YiXiβ − ln(Yi!)} (6)

where the last term − ln(Yi!) can be omitted because it doesn’t vary with β.

It’s actually pretty easy to demonstrate that this log-likelihood is globally concave, and so
estimation is really easy and reliable using more-or-less any optimizer we care to adopt. We’ll
talk about some tinkering with this model a bit later, but for now, this will be our focus for
the day.
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An Example: Judicial Review of Congressional Acts

As our running example, we’ll consider the question of judicial review – specifically, the
number of Acts of Congress struck down as unconstitutional by the U.S. Supreme Court in
every Congress (that is, every two years). Our response variable Yi is the number of Acts of
Congress overturned (“nullified”) by the Supreme Court in each Congress, from 1789-1996
(N = 104). We’ll consider two covariates:

• The mean tenure (tenure) of the Supreme Court’s justices (X̄ = 10.4, σ = 3.4, E(β̂) >
0).

• Whether (1) or not (0) there was unified government (unified) (X̄ = 0.83, E(β̂) < 0).

The obligatory histogram looks like this:

Figure 2: Number of Congressional Acts Nullified by the Supreme Court, by Congress,
1789-1996
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And here are the results, from Stata’s -poisson- command:

. poisson nulls tenure unified

Iteration 0: log likelihood = -189.53751

Iteration 1: log likelihood = -189.53751

Poisson regression Number of obs = 104

LR chi2(2) = 14.27

Prob > chi2 = 0.0008

Log likelihood = -189.53751 Pseudo R2 = 0.0363

---------------------------------------------------------------------

nulls | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------+------------------------------------------------------------

tenure | .0958868 .0256271 3.742 0.000 .0456585 .146115

unified | .1434999 .2327122 0.617 0.537 -.3126077 .5996074

_cons | -.8776214 .3712678 -2.364 0.018 -1.605293 -.1499499

---------------------------------------------------------------------

Note how quickly the results converged, thanks in large part to the aforementioned fact that
the likelihood is globally concave.

Model-Checking and Goodness-of-Fit

We’ll go into the question of whether the Poisson is a “good” model for the data at more
length next time. For now, just recognize that all of the usual ML-based approaches for
global model fit are available (if we’re using Stata that’s the fitstat command):

. fitstat

Measures of Fit for poisson of nulls

Log-Lik Intercept Only: -196.673 Log-Lik Full Model: -189.538

D(101): 379.075 LR(2): 14.271

Prob > LR: 0.001

McFadden’s R2: 0.036 McFadden’s Adj R2: 0.021

ML (Cox-Snell) R2: 0.128 Cragg-Uhler(Nagelkerke) R2: 0.131

AIC: 3.703 AIC*n: 385.075

BIC: -90.008 BIC’: -4.982

BIC used by Stata: 393.008 AIC used by Stata: 385.075
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Here:

• The LR test is the usual F -type test against the global null,

• The IAC and BIC are the usual information criteria scores, and

• The various pseudo-R2s are what they are.

Model Interpretation

Signs-n-Significance

The signs of the β̂s indicate the effect on the expected number of counts. So, positive signs
indicate positive effects – higher values of X correspond to higher counts – while the opposite
is true for negative signs. Here, tenure seems to “matter” – in that higher mean Supreme
Court tenures are associated with greater numbers of nullifications – but unified/divided
government doesn’t.

Incident Rate Ratios

As described here, the Poisson model is a log-linear model not unlike the various flavors of
logit we talked about before. This means that (surprise, surprise!) there is something like an
odds-ratio interpretation of Poisson regression coefficients, just as there is for those models.

In the Poisson case, the quantity of interest is known as the incidence rate – that is, λ̂. The
natural way to compare two observations, then, is the incidence rate ratio (or IRR). For e.g.
a binary covariate XD, we can think of the IRR as the ratio

λ̂|XD = 1

λ̂|XD = 0
=

exp(β̂0 + X̄β̂ + (XD = 1)β̂XD
)

exp(β̂0 + X̄β̂ + (XD = 0)β̂XD
)

= exp(β̂XD
)

That is, we can tell the relative change in the incidence rate for a one-unit change in any
given variable Xk by simply exponentiating its coefficient estimate β̂k.

• In the example, this yields an estimated IRR for the unified variable is equal to
exp(0.143) = 1.15.

• Substantively, this means that the incidence rate under unified government is about
1.15 times that under divided government (that is λUnified = 1.15 × λDivided), which is
not a large change.

• Similarly, a one-year change in the tenure variable corresponds to an estimated IRR
of exp(0.096) = 1.10. That means that increasing the average tenure of the Court
increases the estimated incidence rate by a factor of 1.1.

• More generally, for a δ-unit change in Xk is exp(δβ̂k).
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◦ Thus, a 10-year change in tenure corresponds to an estimated IRR of exp(10 ×
0.096) = exp(0.96) = 2.61.

◦ That is, a Court with an average tenure of t years will be expected to have an
incidence of judicial review roughly 2.6 times that of a Court with a mean tenure

equal to t− 10.

• As with odds ratios in logits, Stata will report IRRs for you automatically; simply
specify the -irr- option to the -poisson- command:

. poisson, irr

Poisson regression Number of obs = 104

LR chi2(2) = 14.27

Prob > chi2 = 0.0008

Log likelihood = -189.53751 Pseudo R2 = 0.0363

--------------------------------------------------------------------

nulls | IRR Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------

tenure | 1.100634 .0282061 3.74 0.000 1.046717 1.157329

unified | 1.154307 .2686212 0.62 0.537 .7315369 1.821404

--------------------------------------------------------------------

Note that this also gives you the estimated standard errors and confidence intervals associated
with the IRRs. As with logit, etc., IRRs are a nice way of verbally describing your results.

Predicted Counts

In a Poisson regression model, the predicted count is just exp(X̄β̂), which – let’s face it – is
pretty easy to calculate. E.g., for a “typical” / modal case (that is, a unified government in
which the average Court tenure is ten years), we get a predicted count of:

E(Y |X̄i) = exp[−0.878 + (0.096× 10) + (0.143× 1)]

= exp(0.225)

= 1.25

From this, you can calculate the change in expected counts by calculating the predicted
count for different values of Xi and taking the difference.

• E.g., the expected count for the same Congress with an average Court tenure of 20
years is exp(1.185) = 3.27.

• So, a ten-year increase in tenure corresponds to a (3.27 − 1.25) ≈ 2-act increase in
judicial review.
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• Note that 3.27
1.25

= 2.61, which is the same as the IRR for a ten-year change reported
above.

• Be sure to include measures of uncertainty here as well (Clarify can be of some help in
this respect...).

Predicted counts can be interesting either for within-sample or out-of-sample predictions. To
graph out-of-sample predictions as a function of continuous covariates, we adopt the same
“dummy dataset” strategy we’ve been using for logit, etc.:

. clear

. set obs 21

. gen unified = 1

. gen tenure=_n-1

. save MLENotes10Sim.dta

. use MLENotes10real.dta, clear

. poisson nulls unified tenure

(output omitted)

. use MLENotes10Sim.dta

. predict xb, xb

. predict se, stdp

. gen counthat=exp(xb)

. gen ub=exp(xb+(1.96*se))

. gen lb=exp(xb-(1.96*se))

. twoway (connected counthat tenure, lcolor(black) lpattern(solid) lwidth(medthick)

msymbol(smcircle) mcolor(black) msize(small)) (rcap ub lb tenure, lcolor(black)

msize(small)), ytitle(Predicted Number of Nullifications) xtitle(Tenure) legend(off)

graphregion(margin(vsmall))

which yields Figure 3. This demonstrates the increase in the expected number of nullifications
associated with a change in tenure across its full range.
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Figure 3: Predicted Number of Congressional Acts Nullified by the Supreme Court, by
tenure

Predicted Probabilities

Beyond expected counts, we might also be interested in the probability that a particular
observation Yi takes on a particular count value y. We can get this predicted probability by
plugging the X values for that observation, and the estimates of β̂, into the basic Poisson
probability statement:

̂Pr(Yi = y|Xi, β̂) =
exp[− exp(Xiβ̂)][exp(Xiβ̂)]y

y!

For example, for the “typical” above case, what are the probabilities of counts equalling
0,1,2, or 3?

̂Pr(Yi = 0|Xi, β̂) =
[exp(−1.25)](1.25)0

0!

=
(0.287)(1)

1
= 0.287
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̂Pr(Yi = 1|Xi, β̂) =
[exp(−1.25)](1.25)1

1!

=
(0.287)(1.25)

1
= 0.359

̂Pr(Yi = 2|Xi, β̂) =
[exp(−1.25)](1.25)2

2!

=
(0.287)(1.563)

2
= 0.224

̂Pr(Yi = 3|Xi, β̂) =
[exp(−1.25)](1.25)3

3!

=
(0.287)(1.953)

6
= 0.093

Adding these, you get 0.963, which tells you that these outcomes account for most of the
potential outcomes at this level of the covariates. Obviously, it would be possible to calcu-
late this for a larger range, and to automate this using Stata or whatever, and to graph them.

Finally, and unsurprisingly, most of the other user-written postestimation commands we’ve
bumped into this semester will also interact happily with -poisson-. Those include -test-,
-mfx-, Clarify, -spost-, and so forth. In our book, Long also suggests calculating the mean
predicted probability of each possible count, across all observations, as a measure that can be
used to assess model fit.

Note: Exposure and Offsets

Finally, we should touch briefly on the subject of exposure. As noted in (1) above, the gen-
eral format for the Poisson distribution takes into account the extent of “exposure” of each
subject i. In the Bernoulli / “rare events” formulation of the Poisson model, above, Yi is the
number of events and Mi is the number of “trials” (that is, the number of possible events).
There, we assumed M →∞, but that isn’t always the case.

Consider, for example, a model of the number of Supreme Court decisions in each term in
which there is at least one dissenting vote/opinion (a la Caldeira and Zorn 1998). There’s
an upper limit on this number: the number of total decisions by the Court – obviously, we
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can’t have Yi = 60 if the Court only decided 59 cases in term i. This factor is often referred
to as an observation’s exposure (after a number of applications in biometrics).

Formally, if each of the observations doesn’t have the same exposure (that is, if Mi 6= Mj ∀ i 6=
j), then the expected count is proportional to the exposure:

E(Yi|Xi, Mi) = λiMi

As a result, the amount of exposure needs to be accounted for in some way, or the model is
misspecified. The easiest way to do this is to include Mi as an offset :

λi = exp[Xiβ + ln(Mi)]

This amounts to including ln(Mi) among the right-hand-side variables, and constraining the
coefficient to equal 1.0. Most software programs have straightforward ways to do this (e.g.,
in Stata , one uses the -exposure- option to -poisson-).

Alternatively one can simply include ln(Mi) among the covariates, and then test whether
or not β̂ln M = 1.0. This latter approach might even be of some substantive interest – for
example, if we were modeling the aforementioned number of “dissent cases,” it might be
interesting to know whether, as the Court’s workload increased, the ability/propensity for
justices to cast dissenting votes or author dissenting opinions (say) decreased.

We can observe the potential significance of exposure by looking at some national-level
data on 102 countries during the period from 1950-1985. These are data aggregated from
“politically-relevant dyads” data, which means that they are sums or means of country-year
data:

• Ndyads is the number of dyad-years which were aggregated to create each observation,
ranging from five to 3249,

• disputes is the number of (interstate) dispute-years that country experienced during
1950-1985,

• allies is the number of (dyadic) ally-years each country had during 1950-1985, and

• openness is the country’s mean trade openness (that is, the ratio Importst+Exportst

GDPt
)

across all 36 years in the data.

The interesting question is the aggregate association between trade openness and interstate
conflict. Note, however, that the more a country is “in the data,” the more possible disputes
they could have gotten into:
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* Data are aggregated dyadic data, 1950-1985...

. su Ndyads disputes allies openness

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

Ndyads | 114 179.3684 451.8623 5 3249

disputes | 114 3.552632 7.714017 0 52

allies | 114 63.91228 143.1086 0 1283

openness | 102 .3920326 .2991905 .0317647 1.658911

Moreover – and not surprisingly – “exposure” is highly correlated with both disputes and
with the number of allies one had:

. corr Ndyads disputes allies openness

(obs=102)

| Ndyads disputes allies openness

-------------+------------------------------------

Ndyads | 1.0000

disputes | 0.8626 1.0000

allies | 0.9200 0.8255 1.0000

openness | -0.0751 -0.1682 -0.1255 1.0000

An initial model that ignores “exposure” yields:

. poisson disputes allies openness

Poisson regression Number of obs = 102

LR chi2(2) = 339.71

Prob > chi2 = 0.0000

Log likelihood = -291.14533 Pseudo R2 = 0.3684

------------------------------------------------------------------------------

disputes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

allies | .0025184 .0001159 21.73 0.000 .0022913 .0027455

openness | -1.114413 .2773631 -4.02 0.000 -1.658035 -.5707915

_cons | 1.15595 .1117581 10.34 0.000 .936908 1.374992

------------------------------------------------------------------------------

Note that this model reflects the strong correlation (through exposure) of allies and disputes
– countries that had a great deal of “exposure” get large numbers for both, suggesting (coun-
terintuitively) that countries with larger numbers of allies are also more likely to get into
disputes.

Once we include an exposure term in the model, however, the results change:
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. poisson disputes allies openness, exposure(Ndyads)

Poisson regression Number of obs = 102

LR chi2(2) = 42.40

Prob > chi2 = 0.0000

Log likelihood = -233.55463 Pseudo R2 = 0.0832

------------------------------------------------------------------------------

disputes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

allies | -.0006058 .0001333 -4.54 0.000 -.0008671 -.0003445

openness | -1.604059 .3167503 -5.06 0.000 -2.224878 -.9832395

_cons | -3.290605 .1194627 -27.55 0.000 -3.524748 -3.056463

Ndyads | (exposure)

------------------------------------------------------------------------------

Once we “control” for exposure, the allies variable has a negative sign (which is what
we would expect), though the strength of the association is small. We can accomplish
something very similar by generating a variable for the log of exposure and including it
among the covariates:

. gen exposure = ln(Ndyads)

. poisson disputes allies openness exposure

Poisson regression Number of obs = 102

LR chi2(3) = 462.09

Prob > chi2 = 0.0000

Log likelihood = -229.95478 Pseudo R2 = 0.5012

------------------------------------------------------------------------------

disputes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

allies | -9.48e-06 .0002569 -0.04 0.971 -.0005129 .000494

openness | -1.444624 .3119605 -4.63 0.000 -2.056056 -.833193

exposure | .8109774 .0709538 11.43 0.000 .6719105 .9500444

_cons | -2.426567 .3434595 -7.07 0.000 -3.099735 -1.753398

------------------------------------------------------------------------------

. test exposure=1

( 1) [disputes]exposure = 1

chi2( 1) = 7.10

Prob > chi2 = 0.0077
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These latter results indicate that:

• The effect relationship between disputes and openness remains more or less un-
changed throughout these models – an unsurprising fact, given that openness is not
at all strongly related to exposure.

• allies’ relationship to disputes is effectively zero, once we address each nation’s
degree of exposure, and

• The increase in disputes as a function of exposure is not quite proportional / one-
to-one.

Finally, note that as a practical matter, if (a) all of the observations have the same (or very
similar) exposures, and/or (b) for the most part, Yi is significantly less than Mi (that is, no
observation “comes close” to experiencing its maximum possible number of events) then the
issue of exposure is not a big deal, and you can probably safely ignore it.
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