Introduction to Applied Bayesian Modeling for the Social Sciences

ICPSR 2012

Thursday, June 21, 2012 Due Monday, June 25, 2012

On your homework, please indicate your name, home institution, field of study, and your e-mail address.

• Prove that the gamma distribution,

$$p(\theta|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta\theta}, \quad \theta,\alpha,\beta > 0$$
(1)

is the conjugate prior distribution for θ in a Poisson probability mass function,

$$p(y_i|\theta) = \frac{e^{-\theta}\theta^{y_i}}{y_i!} \tag{2}$$

that is, calculate a form for the posterior distribution of θ and show that it is also gamma distributed.

- Now use the Gamma-Poisson conjugate specification to analyze data on the number of presidential appointments from 1960 to 2000. The data are in the file called hw.1.bayes.dta on the Z-drive.
- The posterior distribution for θ is gamma(δ_1, δ_2) according to some parameters δ_1 and δ_2 that you derived above which of course depend on your choice of the parameters for the gamma prior. You should model θ using two sets of priors. One which specifies a great deal of certainty regarding your best guess as to the value of θ and one that represents ignorance regarding this value.
- Generate a large number of values from this distribution in R, say 10,000 or so, using the command: posterior.sample <- rgamma(10000,d1,d2)
- Summarize the posteriors with quantities of interest such as means, medians, and variances. Also supply plots of the density of the posterior distributions.