
Introduction to Applied
Bayesian Modeling

 ICPSR
Day 6

MCMC Diagnostics

1) Two approaches to monitoring
convergence

- Monitoring one chain for a long time
- Monitoring more than one chain for a

shorter period of time.
2) Strategies for improving results

Convergence and MCMC
After the model has converged, samples from the conditional

distributions are used to summarize the posterior distribution of
parameters of interest, in this case β and τ.

Convergence refers to the idea that eventually the Gibbs Sampler or
other MCMC technique that we choose will eventually reach a
stationary distribution. From this point on it stays in this distribution
and moved about (or mixes” throughout the subspace forever.

The general questions for us to ask are:
1) At what point do we know that have we converged to the
stationary distribution? (i.e. how long should our “burn-in” period be?
2) After we have reached the stationary distribution, how many
iterations will it take to summarize the posterior distribution?

Possible problems with MCMC (Gelman)

1) The assumed model may not be realistic from a
substantive point of view or may not fit.

2) Errors in calculation or programming!
- Often, simple syntax mistakes may be responsible; however, it

is possible that the algorithm may not converge to a proper
distribution.

3) Slow convergence: this is the problem we are most
likely to run into. The simulation can remain for many
iterations in a region heavily influenced by the starting
distribution or in a local maximum. If the iterations are
used to summarize the target distribution, they can
yield falsely precise estimates.

Traceplots
One intuitive and easily implemented diagnostic tool is a traceplot

which plots the parameter value at time t against the iteration
number.

If the model has converged, the traceplot will move around the mode of
the distribution.

A clear sign of non-convergence with a traceplot occurs when we
observe some trending in the sample space.

The problem with traceplots is that it may appear that we have
converged, however, the chain trapped (for a finite time) in a local
region rather exploring the full posterior.

In WinBugs, you may setup traceplots to monitor parameters while the
program runs.

Examples of Apparent Convergence and
Non-Convergence Based on a trace plot

Autocorrelation Diagnostic
Autocorrelation refers to a pattern of serial correlation in the chain, where

sequential draws of a parameter, say β1, from the conditional distribution are
correlated.

The cause of autocorrelation is that the parameters in our model may be highly
correlated, so the Gibbs Sampler will be slow to explore the entire posterior
distribution.

The reason why autocorrelation is important is that it will take a very long time to
explore the entire posterior distribution.
- Note that if the level of autocorrelation is high for a parameter of interest,
then a traceplot will be a poor diagnostic for convergence.

WinBugs plots the level of autocorrelation out to 50 lags.

Typically, the level of autocorrelation will decline with an increasing number of
lags in the chain (e.g. as we go from the 1000th to the 1010th lags, the level
of autocorrelation will often decline.) When this dampening doesn’t occur,
then you have a problem and will probably want to re-parameterize the
model (more on this below).

Example of Model without autocorrelation
(top) and with autocorrelation (bottom)

betaD[1]

lag

0 20 40

 -1.0
 -0.5
 0.0
 0.5
 1.0

mu.b[1] chains 1:2

lag

0 20 40

 -1.0
 -0.5
 0.0
 0.5
 1.0

In serious (and not uncommon cases), the autocorrelation plot
will be a solid bar across the screen.

Running means of parameters

Running means: Once you have taken enough draws to
summarize the posterior distribution, then if the model has
converged, further samples from a parameter’s posterior
distribution should not influence the calculation of the mean.

A plot of the average draw from the conditional distribution of
draws 1 through t against t is useful for identifying convergence.

Note: that you could probably get the same effect with a traceplot.

Note: WinBugs does not have a canned feature to do this.

Kernel Density Plots

Kernel density plots (a.k.a. smoothed density; histograms)
may be useful diagnostic.

Sometimes non-convergence is reflected in multimodal
distributions. This is especially true if the kernel density
plot isn’t just multi-modal, but lumpy (you’ll know what I
mean when you see it).

When you get a lumpy posterior, it may be important to let
the algorithm run a bit longer. Often, doing this will allow
you to get a much more reasonable summary of the
posterior.

Example of a problematic kernel density plot

mu.b[8] chains 1:2 sample: 128

 0.3 0.35 0.4

 0.0
 10.0
 20.0
 30.0

A more satisfactory kernel density plot would look
more bell-shaped, though it need not be symmetric

Geweke Time-Series Diagnostic
The Geweke Time-Series Diagnostic: if a model has converged, then

if we simulate a large number of draws, the mean (and variance) of
a parameter’s posterior distribution from the first half of the chain will
be equal to the mean (and variance) from the second half of the
chain.

Technically, this statistic is based on spectral density functions that are
beyond the purview of this course and WinBugs does not estimate
this statistic directly, but if you export the CODA chain to R or S-plus
the programs CODA and BOA report the Geweke statistic.

However, a perfectly reasonable way to proceed is look to see whether
the posterior means (and variances) of your parameters are
approximately the same for different halves of your simulated chain.

The value of this approach is that by allowing the algorithm to run for a
very long time, it may reach areas of the posterior distribution that
may not otherwise be reached.

Gelman and Rubin

• test based on 2 or more parallel chains ,
(each started from different initial values).
Their method is based on a comparison of
the within and between chain variances for
each variable (essentially a classical
analysis of variance). Best results are
obtained for parameters whose marginal
posterior densities are approximately
normal

Example of BGR Diagnostic Plot from
Winbugs consistent with convergence

b[6] chains 1:2

iteration

1 500

 0.0

 0.5

 1.0

The normalized width of the central 80% interval of the pooled runs is green

The normalized average width of the 80% intervals within the individual runs is blue

R is red. R would generally be expected to be greater than 1 if the starting values
are suitably over-dispersed.

Brooks and Gelman (1998) emphasize that one should be concerned both with
convergence of R to 1, and with convergence of both the pooled and within interval
widths to stability.

Heidelberger-Welch
• tests the null hypothesis that the sampled values for each variable

are form a stationary process. If the null hypothesis is rejected for a
given variable, the test is repeated after discarding the first 10% of
iterations. If the hypothesis is again rejected, a further 10% of
iterations are discarded. This process is repeated until either a
portion of the chain (of length of the total number of iterations)
passes the stationarity test, or 50% of the iterations have been
discarded and the null hypothesis is still rejected. If the latter
occurs, This indicates that a longer BUGS run is needed in order to
achieve convergence.

• If the stationarity test is passed, CODA/BOA reports the number of
iterations to keep (i.e. which are diagnosed to arise from a stationary
process), the number of initial iterations to discard and the Cramer-
von-Mises statistic.

Raftery-Lewis
• method applies to single chains. It is intended both to

detect convergence to the stationary distribution and to
provide bounds for the accuracy of the estimated
quantiles of functions of variables of interest. The user
must specify the quantile to be estimated (the default is
the 2.5th percentile), the desired degree of accuracy for
the estimate of this quantile (the default is 0.005) and
the required probability of attaining this degree of
accuracy (the default is 0.95). The output then reports
Nmin -- the minimum number of iterations that would be
needed to estimate the specified quantile to the desired
precision if the samples in the chain were independent.

Convergence Diagnostic Summary

1) You can never prove that something has converged, you can only
tell when something has not converged.

2) If you’re model has not converged and you are confident that
YOU haven’t made a stupid mistake, then the best thing to do
may be to just let the model run a long time. CPU time is often
“cheaper” than your time.

For models with large numbers of parameters you should let the model
run for a long time.

3) There are a number of easy to implement tricks (mostly
reparamerizations) that will help to speed convergence in most
regression-based models.

4) Convergence does not mean that you have a good model!!!
Convergence should be the beginning of model assessment, not
its end.

Tricks to speed convergence

1) Standardize all of your variables by subtracting them
from their sample means and dividing by their sample
variances.

- This speeds convergence by decreasing the
posterior correlation between parameters.

In a simple example, suppose that Yi ~ N(a + bXi, 1)
and that we chose flat priors for a and b. The
posterior correlation between a and b is:
ra,b = - mean(x) / (mean(x) + var(x)).5

If the absolute value of mean(x) is large relative to the
sample variance of x, then you will have a large
posterior correlation between a and b and therefore
slow convergence (due to a high autocorrelation in the
parameter simulations).

Tricks to speed convergence

2) If you have multiple indicators of the same
concept, create an index or use a latent variable
model to decrease correlation among the
predictors.

(we will get to latent variable models the last
week, but they are very straightforward to
implement).

Tricks to speed convergence
3) Use multivariate (normal) priors.

Multivariate normal priors allow for prior correlation among regression
coefficients.

model {
for (i in 1:15) {
DemDim1[i] ~ dnorm(muD[i], tauD)
muD[i] <- betaD[1] + betaD[2]*((DemActId[i])) + betaD[3]*((DemNotActId[i]))
}

betaD[1:3] ~ dmnorm(nuD[], v1[,])

nuD[1] <- -.687
nuD[2] <- .099
nuD[3] <- .212

v1[1,1] <- .1; v1[1,2] <- 0; v1[1,3] <- 0
v1[2,1] <- 0; v1[2,2] <- .1; v1[2,3] <- 0
v1[3,1] <- 0; v1[3,2] <- 0; v1[3,3] <- 0.1

tauD ~ dchisqr(1)
}

Tricks to Speed Convergence
4) Use WinBugs’ Over-relax Algorithm.

This generates multiple samples at each iteration and then
selects one that is negatively correlated with the current
value.

The time per iteration will be increased, but the within-chain
correlations should be reduced and hence fewer
iterations may be necessary.

However, this method is not always effective and should be
used with caution.

The auto-correlation function may be used to check
whether the mixing of the chain is improved

Tricks to Speed Convergence

5) Pick good initial values.

If your initial values are near their posterior modes,
then convergence should occur relatively
quickly, especially if there is not an
autocorrelation problem.

Tricks to speed convergence
6) Change sampling algorithms.

This can be a little tricky, but can really speed up
the chains and help with mixing.

It requires you to go into the ‘guts’ of the Bugs files
and change some default settings.

It’s not hard, but you can certainly make some
mistakes here and mess a lot of things up—
potentially.

So BE CAREFUL!

Tricks to Speed Convergence

7) Just wait: Sometimes models just take a long time to converge.

In extreme cases, it may take 100,000 iterations of your sampler to fully
explore the posterior distribution.

Unfortunately, this tends to occur in models with a large number of
parameters that are already slow to run (especially if you also have a
large n).

The problem with this is that storing 100,000 samples * m parameters
requires considerable memory. This may become particularly
important if you try to calculate multiple sample statistics at once after
convergence.

A mildly controversial solution to this is to “thin” your chain, by only
storing every kth sample of your chain.

	Introduction to Applied Bayesian Modeling
	MCMC Diagnostics
	Convergence and MCMC
	Possible problems with MCMC (Gelman)
	Traceplots
	Examples of Apparent Convergence and Non-Convergence Based on a trace plot
	Autocorrelation Diagnostic
	Example of Model without autocorrelation (top) and with autocorrelation (bottom)
	Running means of parameters
	Kernel Density Plots
	Example of a problematic kernel density plot
	Geweke Time-Series Diagnostic
	Gelman and Rubin
	Example of BGR Diagnostic Plot from Winbugs consistent with convergence
	Heidelberger-Welch
	Raftery-Lewis
	Convergence Diagnostic Summary
	Tricks to speed convergence
	Tricks to speed convergence
	Tricks to speed convergence
	Tricks to Speed Convergence
	Tricks to Speed Convergence
	Tricks to speed convergence
	Tricks to Speed Convergence

