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Simple Priors

• Remember Bayes’ Law:

• Where P(A) is the prior probability of A
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Simple prior

• Recall the ‘test for disease’ example 
where we specified the prior probability of 
a disease as a point estimate.

• In that example we said the probability of 
having the disease was 0.01 and then 
computed the probability of having the 
disease given a positive test result.



Too simple?

• Considering the prior probability of having 
a disease (or being pregnant, or winning 
an election, or winning a war, etc…) to be 
a point estimate is probably unreasonable.

• Conditional on age (for disease), money 
raised (for elections) or economic strength 
(for conflicts), wouldn’t we expect the prior 
probabilities to  vary?



Distributions of priors

• Even without conditioning on covariates, 
we would likely find different sources of 
information providing slightly different 
unconditional prior probabilities.

• That is, our prior beliefs would be derived 
from different samples and are not known 
and fixed population quantities.



More realistic priors…

• So…rather than assigning a single value 
for P(A), it makes sense, from a Bayesian 
perspective, to assign a probability 
distribution to P(A) that captures prior 
uncertainty about it’s true value.

• This results in the posterior probability that 
is also a probability distribution, rather 
than a point estimate.



How do we do this?

• As we’ve seen from earlier lectures, we 
must specify the form of the prior 
probability distribution
– Must be an ‘appropriate’ distribution

– That is, the characteristics of the parameter 
help dictate which distribution(s) is/are 
acceptable



Appropriate priors

• For example, if we want to specify a prior 
for a probability (i.e. p in a binomial), we 
need a distribution that varies between 0 
and 1.

• The Beta distribution is perfect for this:

p(p|α,β) = Γ(α + β)

Γ(α) + Γ(β)
pα−1(1− p)β−1
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More priors…

• If we are modeling counts with a Poisson, 
then we want our prior distribution to only 
allow positive values (negative counts 
make no sense).

• The Gamma distribution fits the bill nicely:

p(θ) =
βα

Γ(α)
θα−1e−βθ



And more priors…

• What about normally distributed data?  

• What do think would be a good prior for 
in a normal model?

μ



Hmmm?

• How about Normal?

• How about a prior for the variance?

p(μ) =
1√
2πτ2

exp[− (μ −M )
2

2τ 2
]



Prior for variance

• The standard prior for the variance in the 
normal model is the inverse gamma 
distribution.

p(σ) =
βα

Γ(α)
σ−(α−1)e−

β
σ



So, what does this all mean

• Well, it means that we can specify 
uncertainty about our prior beliefs by using 
appropriate probability distributions.

• It also means that our ‘answers’ are 
distributions rather than point estimates



Do I have to use these priors?

• NO.

• The examples on the previous slides are 
all what we call conjugate priors.

• Conjugacy has some very nice properties



How nice?

• If a prior is conjugate to a given likelihood 
function, then we are guaranteed to have 
a closed-form solution for the moments of 
the posterior.

• HUH?
• This means, that we know the distribution 

of the posterior and can easily solve for 
means, medians, variance, quantiles etc.



We know the form of the posterior?

• YES.

• If a prior is conjugate to the likelihood, 
then the posterior has the same 
distribution as the prior.
– It just has slightly different parameters
– Which are weighted averages of the prior and 

the likelihood.
– We saw this yesterday.



Conjugacy
Table 1: Some Exponential Family Forms and Conjugate Priors

Form Conjugate Prior Distribution Hyperparameters

Bernoulli Beta α > 0, β > 0

Binomial Beta α > 0, β > 0

Multinomial Dirichlet θj > 0, Σθj = θ0

Negative Binomial Beta α > 0, β > 0

Poisson Gamma α > 0, β > 0

Exponential Gamma α > 0, β > 0

Gamma (incl. χ2) Gamma α > 0, β > 0

Normal for μ Normal μ ∈ R, σ2 > 0
Normal for σ2 Inverse Gamma α > 0, β > 0

Pareto for α Gamma α > 0, β > 0

Pareto for β Pareto α > 0, β > 0

Uniform Pareto α > 0, β > 0



Non-informative Priors

F

F

F

A noninformative prior is one in which little new explanatory power about
the unknown parameter is provided by intention.

Noninformative priors are very useful from the perspective of traditional
Bayesianism that sought to mitigate frequentist criticisms of intentional
subjectivity.

Fisher was characteristically negative on the subject: “. . . how are we to
avoid the staggering falsity of saying that however extensive our knowledge
of the values of x may be, yet we know nothing and can know nothing
about the values of θ?”



Uniform Priors
F An obvious choice for the noninformative prior is the uniform distribution:

I Uniform priors are particularly easy to specify in the case of a parameter
with bounded support.

I Proper uniform priors can be specified for parameters defined over un-
bounded space if we are willing to impose prior restrictions.

I Thus if it reasonable to restrict the range of values for a variance param-
eter in a normal model, instead of specifying it over [0 :∞], we restrict it
to [0 : ν] and can now articulate it as p(σ) = 1/ν, 0 ≤ θ ≤ ν.

I Improper uniform priors that do not possess bounded integrals and surpris-
ingly, these can result in fully proper posteriors under some circumstances
(although this is far from guaranteed).

I Consider the common case of a noninformative uniform prior for the mean
of a normal distribution. It would necessarily have uniform mass over
the interval: p(θ) = c, [−∞ ≥ θ ≥ ∞]. Therefore to give any nonzero
probability to values on this support, p(θ) = ² > 0, would lead to a prior
with infinite density:

R∞
−∞ p(θ)dθ =∞.



Elicited Priors
F Clinical Priors: elicited from substantive experts who are taking part
in the research project.

F Skeptical Priors: built with the assumption that the hypothesized ef-
fect does not actually exist and are typically operationalized through a
probability function (PMF or PDF) with mean zero.

F Enthusiastic Priors: the opposite of the sceptical prior, built around
the positions of partisan experts or advocates and generally assuming the
existence of the hypothesized effect.

F Reference Priors: produced from expert opinion as a way to express
informational uncertainty, but they are somewhat misguided in this con-
text since the purpose of elicitation is to glean information that can be
described formally.



So, can I use any prior

• Well, pretty much, but there are some 
things to consider…
– Some priors could lead to nonsensical results
– Some priors make life easier
– Some priors make publication easier—

unfortunately.
– Some priors lead to intractable results…



what does that mean?

• Imagine the following prior:

• You could do this is you REALLY wanted 
to, but this leads to the following result

p(θ) = arctan θsinπ
2+2

QN
i=1(xi)

cos
√
−eπ



Weird prior result

• 1

• + Math

• = HARD



So, then what

• If we have a posterior for which there is no 
analytical solution—or, if the analytical 
solution is REALLY hard,

• Don’t worry—there is an answer.  It’s 

called MCMC.



Next week…

• Summarizing posterior distributions

• Introducing covariates

• MCMC/Gibbs Sampling

• See you at the picnic!!
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