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Sampling from and Summarizing
Posterior Distributions

« Recall that MLE finds the parameter value(s)
that maximize the likelihood function for the
observed data

 We use this information to produce point
estimates and their standard errors.

 Then do standard hypothesis test, assuming
normality, to assess statistical significance.



Posteriors

* In contrast, Bayesian models derive posterior
distributions for parameters

— Not a single point estimate.
— Not reliant on CLT for inference.

— Quantities of interest are integrals of posteriors, like
means, medians, variances and various quantiles.



Why are posteriors better?

 No need to rely on asymptotics and/or
assumptions of normality. The posterior dist of
parameters can be directly assessed

* Allows computation of additional tests and
summaries not available through classical
methods

 Distributions can be easily transformed into
guantities of interest not directly estimated as
part of the model.



|s this hard to do?

e Usually not!

 \We've seen the ease with which this can
be done when analytical solutions are
avallable.
— Results from using conjugate priors

— Easy to sample from univariate posteriors with
random number generators

— Easy to program even If ‘canned’ routines not
available



What about when it i1s hard-i1sh?

o |f analytical solutions are not available we can:

— Still sample using R, for example
 We may need to program (type in) the posterior.

e use approximation methods

— Quadrature
— Taylor series expansions
— Mixture of normals for multi-modal dists.

o Still rely on CLT-which undermines utility of
Bayesian modeling in many situations.

— Small samples, for example



Sampling methods

* We can, instead, simulate a sample from the
distribution(s) of interest and use discrete
formulae to approximate integrals of interest:

Mean: /:Uf(a:)d:c S %Zx
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* Quantiles can be computed by noting the value
of x for which some % of the sample falls
below/above.



Summarizing Posteriors

 So0...Bayesian inference usually involves three
steps:

— Specifying a model and obtaining a posterior
distribution for parameters

— Generating samples from this posterior
— Using discrete formulae to summarize our knowledge
of these parameters
 We've seen that the analytical mean and the
simulated means are VERY similar in the simple
examples/homework from last week.



Basic sampling methods

* Inversion sampling. To sample from f(x):

— Draw a uniform random number u between O
and 1. This represents the area under f(x) to
that point.

— Then z = F1(u) is a draw from f(x).
* We are looking for a z such that:

” = /L " F(2)da



Inversion sampling cont...

e Let’s say we have a linear density
function:

f(z) = 410 (2z+3)  (with 0 <z < 5)

e First draw u ~ U(0,1) and then compute z
that satisfies:

1
= — (22 4 3)d
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Inversion...

e Evaluting this integral at O and z yields:
40u= z*+ 3z
40u + 9/4 = (z + 3/2)?
o Taking the square root of both sides

L —3 4+ /160u + 9
N 2




Inversion cont.

* Inversion is efficient and relatively easy,
but...

— Some inverse functions are impossible to
derive.

e E.g. the normal integral
— Does not work with mulitvariate distributions

as the inverse is not unique beyond one
dimension.

e More unknowns than equations problem.



Rejection Sampling

« Sample a value z from a distribution g(x)
which Is easy to sample from and for
which all values of m * g(x) are greater
than f(x) at all points.

« Compute the ratio: R = f(z)
m % g(z)

« Sample u ~ U(0,1). If R > u, then accept
z as a draw from f(x). Otherwise return to
step 1.




Rejection continued

 We call m*g(x) an ‘envelope function’ as it
envelopes f(x).

 Then we compute the ratio of densities of f(x) to
m * g(x) for a given value of x.

* Finally, we compare this ratio to a random
uniform draw. This ratio is then the probabillity
we accept a draw at a given value x as coming
from f(x).



Rejection cont.

e Can be used for most distributions
— Even If Inversion cannot
— Including multivariate distributions

e Some limitations

— Finding an enveloping distribution may be
hard (or impossible).

— Can be inefficient—may take many draws
from g(x) to get ‘enough’ draws from f(x).



Bayesian Methods, Ch.8 [10]

Continuous Form with Bounded Support (cont. )

» 100 points sampled uniformly from the two-dimensional rectangle over: [(A, B), (0, max(f(x)))]
(0, 10), (0,0.4)]. In total 27 values fell into the area we wish to integrate, so we obtain the size of

the interval from: (27/100)(10 x 0.4) = 1.04.
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Bayesian Methods, Ch.8 [15]
Continuous Form with Unbounded Support

» Now address the integral of some function f(z) in which the analytical solution is difficult or im-

possible, and the form of f(z) has unbounded tails.

» Specify a “majorizing function,” g(x), which for every value of x in the support of f(x) has the

property that g(x) > f(z).

Density

A .

Support




MCMC--briefly

« MCMC simulation methods can use either
Inversion or rejection sampling to sample
from posterior densities.

— Inversion not as likely given the impossibility
of inverting multivariate distributions.

— Gibbs Sampling usually relies on rejection
(adaptive rejection, actually) sampling



However,

* Gibbs Sampling can be problematic if

— We cannot derive the conditional distributions
for the parameters of interest

— If the form of the conditional distributions iIs
unknown.

— Inversion sampling is impossible
— Cannot find appropriate envelope function



Metropolis-Hastings

« Algorithm that generates samples from the
full joint density.

e Works on multivariate distributions

 Doesn’t require an envelope.



Metropolis Hastings in words

e Establish starting values for parameters.

 Draw a ‘candidate’ value from a proposal
density

— Similar to rejection, but doesn’t need to
envelope

— Use a distribution that Iis easy to sample
from—Iike normal, uniform.

— Assess probability this is from the target
distribution—Iike rejection.
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