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Sampling from and Summarizing
Posterior Distributions

• Recall that MLE finds the parameter value(s) 
that maximize the likelihood function for the 
observed data

• We use this information to produce point 
estimates and their standard errors.

• Then do standard hypothesis test, assuming 
normality, to assess statistical significance.



Posteriors 
• In contrast, Bayesian models derive posterior 

distributions for parameters

– Not a single point estimate.

– Not reliant on CLT for inference.

– Quantities of interest are integrals of posteriors, like 
means, medians, variances and various quantiles.



Why are posteriors better? 

• No need to rely on asymptotics and/or 
assumptions of normality. The posterior dist of 
parameters can be directly assessed

• Allows computation of additional tests and 
summaries not available through classical 
methods

• Distributions can be easily transformed into 
quantities of interest not directly estimated as 
part of the model.



Is this hard to do?

• Usually not!
• We’ve seen the ease with which this can 

be done when analytical solutions are 
available. 
– Results from using conjugate priors
– Easy to sample from univariate posteriors with 

random number generators
– Easy to program even if ‘canned’ routines not 

available



What about when it is hard-ish?
• If analytical solutions are not available we can:

– Still sample using R, for example
• We may need to program (type in) the posterior.

• use approximation methods
– Quadrature
– Taylor series expansions
– Mixture of normals for multi-modal dists.

• Still rely on CLT-which undermines utility of 
Bayesian modeling in many situations.
– Small samples, for example



Sampling methods
• We can, instead, simulate a sample from the 

distribution(s) of interest and use discrete 
formulae to approximate integrals of interest: 

• Quantiles can be computed by noting the value 
of x for which some % of the sample falls 
below/above.
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Summarizing Posteriors

• So…Bayesian inference usually involves three 
steps:
– Specifying a model and obtaining a posterior 

distribution for parameters
– Generating samples from this posterior
– Using discrete formulae to summarize our knowledge 

of these parameters
• We’ve seen that the analytical mean and the 

simulated means are VERY similar in the simple 
examples/homework from last week.



Basic sampling methods

• Inversion sampling.  To sample from f(x):
– Draw a uniform random number u between 0 

and 1.  This represents the area under f(x) to 
that point.

– Then z = F-1 (u) is a draw from f(x).
• We are looking for a z such that:

u =

Z z

L

f(x)dx



Inversion sampling cont…

• Let’s say we have a linear density 
function:

• First draw u ~ U(0,1) and then compute z 
that satisfies:

u =

Z z

0
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40
(2x+ 3)dx



Inversion…

• Evaluting this integral at 0 and z yields:
40u= z2 + 3z 

40u + 9/4 = (z + 3/2)2

• Taking the square root of both sides 

z =
−3±

√
160u+ 9

2



Inversion cont.

• Inversion is efficient and relatively easy, 
but…

– Some inverse functions are impossible to 
derive.

• E.g. the normal integral
– Does not work with mulitvariate distributions 

as the inverse is not unique beyond one 
dimension.

• More unknowns than equations problem.



Rejection Sampling

• Sample a value z from a distribution g(x)
which is easy to sample from and for 
which all values of m * g(x) are greater 
than f(x) at all points.

• Compute the ratio:

• Sample u ~ U(0,1).  If R > u, then accept 
z as a draw from f(x).  Otherwise return to 
step 1.

R =
f(z)

m ∗ g(z)



Rejection continued
• We call m*g(x) an ‘envelope function’ as it 

envelopes f(x).

• Then we compute the ratio of densities of f(x) to 
m * g(x) for a given value of x.

• Finally, we compare this ratio to a random 
uniform draw.  This ratio is then the probability 
we accept a draw at a given value x as coming 
from f(x).



Rejection cont.

• Can be used for most distributions
– Even if inversion cannot
– Including multivariate distributions

• Some limitations
– Finding an enveloping distribution may be 

hard (or impossible).  
– Can be inefficient—may take many draws 

from g(x) to get ‘enough’ draws from f(x).



Bayesian Methods, Ch.8 [10]

Continuous Form with Bounded Support (cont.)

I 100 points sampled uniformly from the two-dimensional rectangle over: [(A, B), (0, max(f(x)))] =

[(0, 10), (0, 0.4)]. In total 27 values fell into the area we wish to integrate, so we obtain the size of

the interval from: (27/100)(10 × 0.4) = 1.04.
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Bayesian Methods, Ch.8 [15]

Continuous Form with Unbounded Support

I Now address the integral of some function f(x) in which the analytical solution is difficult or im-

possible, and the form of f(x) has unbounded tails.

I Specify a “majorizing function,” g(x), which for every value of x in the support of f(x) has the

property that g(x) ≥ f(x).
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MCMC--briefly

• MCMC simulation methods can use either 
inversion or rejection sampling to sample 
from posterior densities.
– Inversion not as likely given the impossibility 

of inverting multivariate distributions.

– Gibbs Sampling usually relies on rejection 
(adaptive rejection, actually) sampling



However,

• Gibbs Sampling can be problematic if

– We cannot derive the conditional distributions 
for the parameters of interest

– If the form of the conditional distributions is 
unknown.

– Inversion sampling is impossible
– Cannot find appropriate envelope function



Metropolis-Hastings

• Algorithm that generates samples from the 
full joint density.

• Works on multivariate distributions

• Doesn’t require an envelope.



Metropolis Hastings in words

• Establish starting values for parameters.
• Draw a ‘candidate’ value from a proposal 

density
– Similar to rejection, but doesn’t need to 

envelope
– Use a distribution that is easy to sample 

from—like normal, uniform.
– Assess probability this is from the target 

distribution—like rejection.
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