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Bayesian Methods: GLM [1]

Likelihood and Maximum Likelihood Principles

• Likelihood theory is an important part of Bayesian inference: it is how the data enter the model.

• The basis is Fisher’s principle: what value of the unknown parameter is “most likely” to have

generated the observed data.

• Example: flip a coin 10 times, get 5 heads. MLE for p is 0.5.

• This is easily the most common and well-understood general estimation process.



Bayesian Methods: GLM [2]

• Starting details:

– Y is a n × k design or observation matrix, θ is a k × 1 unknown coefficient vector to be esti-

mated, we want p(θ|Y) (joint sampling distribution or posterior) from p(Y|θ) (joint probabil-

ity function).

– Define the likelihood function:

L(θ|Y) =

n∏

i=1

p(Yi|θ)

which is no longer on the probability metric.

– Our goal is the maximum likelihood value of θ:

θ̂ : L(θ̂|Y) ≥ L(θ|Y) ∀θ ∈ Θ

where Θ is the class of admissable values for θ.



Bayesian Methods: GLM [3]

Likelihood and Maximum Likelihood Principles (cont.)

• Its actually easier to work with the natural log of the likelihood function:

`(θ|Y) = logL(θ|Y)

• We also find it useful to work with the score function, the first derivative of the log likelihood func-

tion with respect to the parameters of interest:

˙̀(θ|Y) =
∂

∂θ
`(θ|Y)

• Setting ˙̀(θ|Y) equal to zero and solving gives the MLE : θ̂, the “most likely” value of θ from the

parameter space Θ treating the observed data as given.



Bayesian Methods: GLM [4]

• The Likelihood Principle (Birnbaum 1962) states that once the data are observed, and therefore

treated as given, all of the available evidence for estimating θ̂ is contained in the (log) likelihood

function, `(θ|Y).

• Setting the score function from the joint PDF or PMF equal to zero and rearranging gives the like-

lihood equation:
∑

t(yi) = n
∂

∂θ
E[y]

where
∑
t(yi) is the remaining function of the data,



Bayesian Methods: GLM [5]

Likelihood and Maximum Likelihood Principles (cont.)

• Nice properties of the MLE (very well known):

– log likelihood unimodal for exponential family forms,

– consistent,

– asymptotically efficient (reaches the CRLB),

– asymptotically normal:
√
n(θ̂ − θ)

P→ N (0, Σθ),

–
∑
t(yi) is sufficient for θ.



Bayesian Methods: GLM [6]

• Example: Linear Regression.

The likelihood equation for the residuals is:

L(ε) = (2πσ2)−
n
2 exp

[

− 1

2σ2
ε′ε

]

= (2πσ2)−
n
2 exp

[

− 1

2σ2
(y − Xb)′(y − Xb)

]

.

L(ε) is concave for this equation, (not always guaranteed ). The log of L(ε) is maximized at the

same point as the function itself, so take the derivative with respect to b of the easier function, and

solve for zero:

logL(ε) = −1

n
log(2π) − 1

n
log(2σ2) − 1

2σ2
(y − Xb)′(y − Xb)

∂

∂b
logL(ε) =

1

σ2
X′(y − Xb) ≡ 0

b̂ = (X′X)−1X′y.



Bayesian Methods: GLM [7]

Exponential Family Form

• The exponential family form of a PDF or PMF is:

f(z|ζ) = exp
[
t(z)u(ζ)

]
r(z)s(ζ)

= exp
[
t(z)u(ζ) + log r(z) + log s(ζ)

]
,

where: r and t are real-valued functions of z that do not depend on ζ, and s and u are real-valued

functions of ζ that do not depend on z, and r(z) > 0, s(ζ) > 0 ∀z, ζ.



Bayesian Methods: GLM [8]

• The canonical form obtained by transforming: y = t(z), and θ = u(ζ). Call θ the canonical param-

eter. This produces the final form:

f(y|θ) = exp
[
yθ − b(θ) + c(y)

]
.

• The exponential family form is invariant to sampling:

f(y|θ) = exp
[∑

yiθ − nb(θ) +
∑

c(yi)
]
.

• And there often exists a scale parameter :

f(y|θ) = exp

[∑
yiθ − nb(θ)

φ
+

∑

c(yi, φ)

]

.



Bayesian Methods: GLM [9]

Exponential Family Form (cont.)

• Example: normal PDF.

f(y|µ, σ2) = (2πσ2)−1/2 exp

[

− 1

2σ2
(y − µ)2

]

= exp

[

−1

2
log(2πσ2) − 1

2σ2
(y − µ)2

]

= exp

[

( yµ
︸︷︷︸
yθ

− µ2

2︸︷︷︸

b(θ)

)/ σ2
︸︷︷︸
φ

+
−1

2

(
y2

σ2
+ log(2πσ2)

)

︸ ︷︷ ︸

c(y,φ)

]

.



Bayesian Methods: GLM [10]

• Why is this handy

– Consider the score function in this notation:

˙̀(θ|φ, y) =
y − ∂

∂θ
b(θ)

φ

– Which actually has n data values:

˙̀(θ|φ,y) =

∑
t(yi) − n ∂

∂θb(θ)

φ

– We then set this equal to zero and rearrange to get the normal equation :

∑

t(yi) = n
∂

∂θ
b(θ)

– Returning to the normal case:

b(θ) =
θ2

2
, and t(y) = y, so θ̂ =

1

n

∑

yi.



Bayesian Methods: GLM [12]

Generalized Linear Model Theory

The Generalization

Start with the standard linear model meeting the Gauss-Markov conditions:

V
(n×1)

= Xβ
(n×p)(p×1)

+ ε
(n×1)

(1)

E[V]
(n×1)

= θ
(n×1)

= Xβ
(n×p)(p×1)

(2)

Generalize slightly with a new “linear predictor” based on the mean of the outcome variable:

g(µ)
(n×1)

= θ
(n×1)

= Xβ
(n×p)(p×1)



Bayesian Methods: GLM [13]

The generalization of the linear model has 4 components:

I. Stochastic Component: Y is the random or stochastic component which remains distributed

i.i.d. according to a specific exponential family distribution with mean µ.

II. Systematic Component: θ = Xβ is the systematic component with an associated Gauss-

Markov normal basis.

III. Link Function: the stochastic component and the systematic component are linked by a func-

tion of θ which is exactly the canonical link function, summarized in the Table below. We can

think of g(µ) as “tricking” the linear model into thinking that it is still acting upon normally dis-

tributed outcome variables.

IV. Residuals: Although the residuals can be expressed in the same manner as in the standard linear

model, observed outcome variable value minus predicted outcome variable value, a more useful

quantity is the deviance residual described in detail below.



Bayesian Methods: GLM [14]

Useful Distributions:

• Poisson Distribution

– often used to model counts such as the number of arrivals, deaths, or failures, in a given time

period.

– assumes that for short time intervals, the probability of an arrival is fixed and proportional to

the length of the interval.

– indexed by “intensity parameter” equal to mean and variance.

• Binomial Distribution

– summarizes the outcome of multiple binary outcome (Bernoulli) trials such as flipping a coin.

– useful for modeling counts of success or failures given a number independent trials such as votes

received given an electorate, international wars given country-dyads in a region, or bankrupt-

cies given company starts.

– parameterized by number of trials (n) and probability of success (p).



Bayesian Methods: GLM [15]

• Normal Distribution

– outcome variable is interval measured and unbounded.

– produces standard linear model.

• Gamma Distribution

– useful for modeling terms that are required to be non-negative such as variances.

– two important special cases: the χ2 distribution is gamma(ρ2,
1
2) for ρ degrees of freedom, expo-

nential distribution is gamma(1, β).

• Negative Binomial Distribution

– models the number of failures (y) before the rth success.

– parameterized by r and p.



Bayesian Methods: GLM [16]

Table 1: Natural Link Function Summary for Example Distributions

Canonical Link: Inverse Link:

Distribution θ = g(µ) µ = g−1(θ)

Poisson log(µ) exp(θ)

Binomial logit link: log
(

µ
1−µ

)
exp(θ)

1+exp(θ)

probit link: Φ−1 (µ) Φ (θ)

cloglog link: log (−log(1 − µ)) 1 − exp (−exp(θ))

Normal µ θ

Gamma − 1
µ −1

θ

Negative Binomial log(1 − µ) 1 − exp(θ)



Bayesian Methods: GLM [17]

Poisson GLM of Capital Punishment Data

The model is developed from the Poisson link function, θ = log(µ), with the objective of finding the

best β vector in:

g−1(θ)
︸ ︷︷ ︸

17×1

= g−1(Xβ)

= exp [Xβ]

= exp [1β0 + INCβ1 + POVβ2 + BLKβ3 + CRIβ4 + SOUβ5 + DEGβ6]

= E[Y] = E[EXE].



Bayesian Methods: GLM [18]

Table 2: Capital Punishment in the United States − 1997

Median Percent Percent Violent Proportion
State Executions Income Poverty Black Crime/100K South w/Degrees
Texas 37 34453 16.7 12.2 644 1 0.16
Virginia 9 41534 12.5 20.0 351 1 0.27
Missouri 6 35802 10.6 11.2 591 0 0.21
Arkansas 4 26954 18.4 16.1 524 1 0.16
Alabama 3 31468 14.8 25.9 565 1 0.19
Arizona 2 32552 18.8 3.5 632 0 0.25
Illinois 2 40873 11.6 15.3 886 0 0.25
South Carolina 2 34861 13.1 30.1 997 1 0.21
Colorado 1 42562 9.4 4.3 405 0 0.31
Florida 1 31900 14.3 15.4 1051 1 0.24
Indiana 1 37421 8.2 8.2 537 0 0.19
Kentucky 1 33305 16.4 7.2 321 0 0.16
Louisiana 1 32108 18.4 32.1 929 1 0.18
Maryland 1 45844 9.3 27.4 931 0 0.29
Nebraska 1 34743 10.0 4.0 435 0 0.24
Oklahoma 1 29709 15.2 7.7 597 0 0.21
Oregon 1 36777 11.7 1.8 463 0 0.25

EXE INC POV BLK CRI SOU DEG

Source: United States Census Bureau, United States Department of Justice.



Bayesian Methods: GLM [19]

dp.97 <- read.table("http://web.clas.ufl.edu/~jgill/GLM.Data/cpunish.dat",header=T)

attach(dp.97)

dp.out <- glm(EXECUTIONS ~ INCOME + PERPOVERTY + PERBLACK + log(VC100k96) + SOUTH

+ PROPDEGREE, family=poisson)

glm.summary <- function (in.object, alpha = 0.05)

{

lo <- in.object$coefficient - qnorm(1-alpha/2) * sqrt(diag(summary(in.object)$cov.unscaled))

hi <- in.object$coefficient + qnorm(1-alpha/2) * sqrt(diag(summary(in.object)$cov.unscaled))

out.mat <- round(cbind(in.object$coefficient, sqrt(diag(glm.vc(in.object))), lo, hi),5)

dimnames(out.mat)[[2]] <- c("Coefficient","Std. Error",

paste(1-alpha,"CI Lower"),paste(1-alpha,"CI Upper"))

out.mat

}

glm.summary(dp.out)



Bayesian Methods: GLM [20]

Coefficient Std. Error 0.95 CI Lower 0.95 CI Upper

(Intercept) -6.30665 4.17678 -14.49299 1.87969

INCOME 0.00027 0.00005 0.00017 0.00037

PERPOVERTY 0.06897 0.07979 -0.08741 0.22534

PERBLACK -0.09500 0.02284 -0.13978 -0.05023

log(VC100k96) 0.22124 0.44243 -0.64591 1.08838

SOUTH 2.30988 0.42875 1.46955 3.15022

PROPDEGREE -19.70241 4.46366 -28.45102 -10.95380



Bayesian Methods: GLM [21]

Table 3: Modeling Capital Punishment in the United States: 1997

Coefficient Standard Error 95% Confidence Interval

(Intercept) -6.30665 4.17678 [-14.49299: 1.87969]

Median Income 0.00027 0.00005 [ 0.00017: 0.00037]

Percent Poverty 0.06897 0.07979 [ -0.08741: 0.22534]

Percent Black -0.09500 0.02284 [ -0.13978: -0.05023]

log(Violent Crime) 0.22124 0.44243 [ -0.64591: 1.08838]

South 2.30988 0.42875 [ 1.46955: 3.15022]

Degree Proportion -19.70241 4.46366 [-28.45102:-10.95380]

Null deviance: 136.573, df = 16 Maximized `(): -31.7375

Summed deviance: 18.212, df = 11 AIC: 77.475



Bayesian Methods: GLM [22]

VC = (−A)−1 =


















Int INC POV BLK log(CRI) SOU DEG

17.445501654 −0.000131052 −0.198325558 0.017689695 −1.484011921 0.368916884 −4.651658695

−0.000131052 0.000000003 0.000001862 0.000000113 0.000004171 −0.000006245 −0.000094858

−0.198325558 0.000001862 0.006365688 0.000158039 0.003911954 −0.017825119 0.121451892

0.017689695 0.000000113 0.000158039 0.000521871 −0.003283494 −0.005090192 −0.033679253

−1.484011921 0.000004171 0.003911954 −0.003283494 0.195742167 −0.001384018 0.397439934

0.368916884 −0.000006245 −0.017825119 −0.005090192 −0.001384018 0.183825030 0.298730196

−4.651658695 −0.000094858 0.121451892 −0.033679253 0.397439934 0.298730196 19.924250374



















.



Bayesian Methods: GLM [23]
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Bayesian Methods: GLM [24]

Gamma GLM of Electoral Politics in Scotland

• On September 11, 1997 Scottish voters overwhelming (74.3%) approved the establishment of the

first Scottish national parliament in nearly three hundred years.

• On the same ballot, the voters gave strong support (63.5%) to granting this parliament taxation

powers.

• Data: 32 Unitary Authorities (also called council districts), U.K. government sources, includes 40

potential explanatory variables



Bayesian Methods: GLM [25]

The model for these data using the gamma link function is produced by:

g−1(θ)
︸ ︷︷ ︸

32×1

= g−1(Xβ)

= − 1

Xβ

= − [1β0 + COUβ1 + UNMβ2 + MORβ3 + ACTβ4 + AGEβ5]
−1

= E[Y] = E[YES].

The systematic component here is Xβ, the stochastic component is Y = YES, and the link function

is θ = − 1
µ
.



Bayesian Methods: GLM [26]

Table 4: Taxation Powers Vote for the Scottish Parliament − 1997
Proportion Council % Female Standardized % Active % Aged
Voting Yes Tax Unemploy. Mortality Economically 5−15

Aberdeen City 0.603 712 21.0 105 82.4 12.3
Aberdeenshire 0.523 643 26.5 97 80.2 15.3
Angus 0.534 679 28.3 113 86.3 13.9
Argyll & Bute 0.570 801 27.1 109 80.4 13.6
Clackmannanshire 0.687 753 22.0 115 64.7 14.6
Dumfries & Galloway 0.488 714 24.3 107 79.0 13.8
Dundee City 0.655 920 21.2 118 72.2 13.3
East Ayrshire 0.705 779 20.5 114 75.2 14.5
East Dunbartonshire 0.591 771 23.2 102 81.1 14.2
East Lothian 0.627 724 20.5 112 80.3 13.7
East Renfrewshire 0.516 682 23.8 96 83.0 14.6
Edinburgh City 0.620 837 22.1 111 74.5 11.6
Western Isles 0.684 599 19.9 117 83.8 15.1
Falkirk 0.692 680 21.5 121 77.6 13.7
Fife 0.647 747 22.5 109 77.9 14.4
Glasgow City 0.750 982 19.4 137 65.3 13.3
Highland 0.621 719 25.9 109 80.9 14.9
Inverclyde 0.672 831 18.5 138 80.2 14.6
Midlothian 0.677 858 19.4 119 84.8 14.3
Moray 0.527 652 27.2 108 86.4 14.6
North Ayrshire 0.657 718 23.7 115 73.5 15.0
North Lanarkshir 0.722 787 20.8 126 74.7 14.9
Orkney Islands 0.474 515 26.8 106 87.8 15.3
Perth and Kinross 0.513 732 23.0 103 86.6 13.8
Renfrewshire 0.636 783 20.5 125 78.5 14.1
Scottish Borders 0.507 612 23.7 100 80.6 13.3
Shetland Islands 0.516 486 23.2 117 84.8 15.9
South Ayrshire 0.562 765 23.6 105 79.2 13.7
South Lanarkshire 0.676 793 21.7 125 78.4 14.5
Stirling 0.589 776 23.0 110 77.2 13.6
West Dunbartonshire 0.747 978 19.3 130 71.5 15.3
West Lothian 0.673 792 21.2 126 82.2 15.1

YES COU UNM MOR ACT AGE
Source: U.K. Office for National Statistics, the General Register Office for Scotland, the Scottish Office.



Bayesian Methods: GLM [27]

scotland.df <- read.table("http://web.clas.ufl.edu/~jgill/GLM.Data/scotvote.dat",header=T)

scottish.vote.glm <- glm((PerYesTax/100) ~ CouncilTax * PerClaimantFemale + StdMortalityRatio

+ Active + GDP + Percentage5to15,

family=Gamma, data=scotland.df)



Bayesian Methods: GLM [28]

Table 5: Modeling the Vote for Parliamentary Taxation: 1997

Coefficient Standard Error 95% Confidence Interval

(Intercept) -1.77653 1.14789 [-4.14566: 0.59261]

Council Tax 0.00496 0.00162 [ 0.00162: 0.00831]

Female Unemployment 0.20344 0.05321 [ 0.09363: 0.31326]

Standardized Mortality -0.00718 0.00271 [-0.01278:-0.00159]

Economically Active 0.01119 0.00406 [ 0.00281: 0.01956]

GDP -0.00001 0.00001 [-0.00004: 0.00001]

Percent Aged 5−15 -0.05187 0.02403 [-0.10145:-0.00228]

Council Tax:Female Un. -0.00024 0.00007 [-0.00040:-0.00009]

Null deviance: 0.536072, df = 31 Maximized `(): 63.89

Summed deviance: 0.087389, df = 24 AIC: -111.78



Bayesian Methods: GLM [30]

RESIDUALS AND MODEL FIT

• General Notation: D =
∑n

i=1 d(θ, yi)

• Linear Model Residual Vector: Rstandard = Y − Xβ

• Response Residual Vector: RResponse = Y − g−1(Xβ)

• Pearson Residual Vector: RPearson = Y−µ√
V AR[µ]

(the sum of the Pearson residuals for a Poisson

generalized linear model is the Pearson χ2 goodness-of-fit measure)

• RWorking = (y − µ) ∂
∂θ

µ (from the last step of Iteratively Reweighted Least Squares algorithm).

Individual Deviance Function:

RDeviance =
(yi − µi)

|yi − µi|
√

|d(θ, yi)| where: d(θ, yi) = −2
[

`(θ̂, ψ|yi) − `(θ̃, ψ|yi)
]

.



Bayesian Methods: GLM [31]

Table 6: Deviance Functions

Distribution Canonical Parameter Deviance Function

Poisson(µ) θ = log(µ) 2
∑

[

yilog
(
yi
µi

)

− yi + µi

]

Binomial(m,p) θ = log
(

µ
1−µ

)

2
∑

[

yilog
(
yi
µi

)

+ (mi − yi)log
(
mi−yi
mi−µi

)]

Normal(µ, σ) θ = µ
∑

[yi − µi]
2

Gamma(µ, δ) θ = − 1
µ

2
∑

[

−log
(
yi
µi

)
yi−µi
µi

]

Negative Binom(µ, p) θ = log(1 − µ) 2
∑

[

yilog
(
yi
µi

)

+ (1 + yi)log
(

1+µi
1+yi

)]



Bayesian Methods: GLM [32]

Poisson GLM of Capital Punishment, Continued

Table 7: Residuals From Poisson Model of Capital Punishment

Response Pearson Working Deviance Anscombe

Texas 1.70755431 0.28741478 0.04837752 0.28515874 0.28292493

Virginia 0.87407687 0.30671010 0.10762321 0.30136452 0.29629097

Missouri 4.59530299 3.86395636 3.24898061 2.86925916 2.27854829

Arkansas 0.26481208 0.13694108 0.07081505 0.13544624 0.13391171

Alabama 0.95958171 0.67097152 0.46916278 0.62736060 0.58874967

Arizona 0.95395198 0.93375106 0.91397549 0.82741022 0.74425671

Illinois 0.13924315 0.10197129 0.07467388 0.10084230 0.09963912

South Carolina -0.38227185 -0.24752186 -0.16027167 -0.25478237 -0.26235519

Colorado -0.95901329 -0.68428704 -0.48826435 -0.75706323 -0.84845827

Florida -1.82216650 -1.08543456 -0.64657649 -1.25272634 -1.49557143

Indiana -2.17726883 -1.21566195 -0.67880001 -1.42915840 -1.74185735

Kentucky -2.31839936 -1.26926054 -0.69489994 -1.49593905 -1.83715998

Louisiana -1.60160305 -0.99359914 -0.61640776 -1.13620002 -1.33738726

Maryland 0.10161119 0.10709684 0.11287657 0.10527242 0.10341466

Nebraska 0.07022962 0.07261924 0.07506941 0.07194451 0.07107841

Oklahoma 0.49917358 0.70406163 0.99304011 0.62019695 0.55401828

Oregon -0.90510552 -0.65451282 -0.47330769 -0.72189767 -0.80517526

‖



Bayesian Methods: GLM [33]

Figure 1: Jackknife Index Plot: Capital Punishment Model
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Bayesian Methods: GLM [34]

New and Old Ways to Look at Model Fit

• Approximation to Pearson’s Statistic.

X2 =
n∑

i=1

R2
Pearson =

n∑

i=1

[

Y − µ
√

V AR[µ]

]2

. (3)

If the sample size is sufficiently large, then X2

a(φ) ∼ χ2
n−p where n is the sample size and p is the num-

ber of explanatory variables including the constant.

• Summed Deviance.

Given sufficient sample size, it is also true thatD(θ,y)/a(ψ) ∼ χ2
n−p. It is also common to con-

trast this with the null deviance : the deviance function calculated for a model with no covariates

(mean function only).



Bayesian Methods: GLM [35]

• Akaike Information Criterion.

minimizes the negative likelihood penalized by the number of parameters:

AIC = −2`(θ̂|y) + 2p (4)

where `(θ̂|y) is the maximized model log likelihood value and p is the number of explanatory vari-

ables in the model (including the constant). (AIC has a bias towards models that overfit with ex-

tra parameters since the penalty component is obviously linear with increases in the number of ex-

planatory variables, and the log likelihood often increases more rapidly.)

• Schwartz Criterion/Bayesian Information Criterion (BIC).

BIC = −2`(θ̂|y) + plog(n) (5)

where n is the sample size.

• Graphical Techniques



Bayesian Methods: GLM [36]

Negative Binomial GLM, Congressional Activity: 1995

• Negative binomial distribution has the same sample space (i.e. on the counting measure) as the

Poisson, but contains an additional parameter which can be thought of as gamma distributed and

therefore used to model a variance function.

• Used by many to fit a count model with overdispersion.

• compare the number of bills assigned to committee in the first 100 days of the 103rd and 104th

Houses as a function of the number of members on the committee, the number of subcommittees,

the number of staff assigned to the committee, and a dummy variable indicating whether or not it

is a high prestige committee.

• Model is developed with the link function: θ = log(1 − µ).
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Table 8: Bills Assigned to Committed, First 100 Days

Committee Size Subcommittees Staff Prestige Bills–103rd Bills–104th

Appropriations 58 13 109 1 9 6
Budget 42 0 39 1 101 23
Rules 13 2 25 1 54 44
Ways and Means 39 5 23 1 542 355
Banking 51 5 61 0 101 125
Economic/Educ. Opportunities 43 5 69 0 158 131
Commerce 49 4 79 0 196 271
International Relations 44 3 68 0 40 63
Government Reform 51 7 99 0 72 149
Judiciary 35 5 56 0 168 253
Agriculture 49 5 46 0 60 81
National Security 55 7 48 0 75 89
Resources 44 5 58 0 98 142
Transport./Infrastructure 61 6 74 0 69 155
Science 50 4 58 0 25 27
Small Business 43 4 29 0 9 8
Veterans Affairs 33 3 36 0 41 28
House Oversight 12 0 24 0 233 68
Standards of Conduct 10 0 9 0 0 1
Intelligence 16 2 24 0 2 4
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committee.dat <- read.table("/export/home/jgill/Book.GLM/Example.Committee/committee.dat",

header=T,col.names=1)

attach(committee.dat)

committee.out <- glm.nb(BILLS104 ~ SIZE + SUBS ttee.out <- glm.nb(BILLS104 ~ SIZE +

SUBS * (log(STAFF)) + PRESTIGE + BILLS103)

resp <- resid(committee.out,type="response")

pears <- resid(committee.out,type="pearson")

working <- resid(committee.out,type="working")

devs <- resid(committee.out,type="deviance")
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Table 9: Modeling Bill Assignment – 104th House, First 100 Days

Coefficient Standard Error 95% Confidence Interval

(Intercept) -6.80543 2.54651 [-12.30683:-1.30402]

Size -0.02825 0.02093 [ -0.07345: 0.01696]

Subcommittees 1.30159 0.54370 [ 0.12701: 2.47619]

log(Staff) 3.00971 0.79450 [ 1.29329: 4.72613]

Prestige -0.32367 0.44102 [ -1.27644: 0.62911]

Bills in 103rd 0.00656 0.00139 [ 0.00355: 0.00957]

Subcommittees:log(STAFF) -0.32364 0.12489 [ -0.59345:-0.05384]

Null deviance: 107.314, df = 19 Maximized `(): 10559

Summed deviance: 20.948, df = 13 AIC: 121130
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Figure 2: Residual Diagnostics: Bill Assignment Model
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Two-Stage GLM, the World Copper Market: 1951–1975

• common managerial economic problem: the estimation of a model of supply and demand functions

for a certain good given data.

• central problem, endogeneity: price affects demand and demand affects price.

• classic solution: implement a two-stage process in which the endogenous variable for price is re-

gressed onto some exogenous variables to create a predicted price vector, then this predicted price

vector is used as one of a set of explanatory variables to regress quantity.

• the model is fully identified if the first stage of the model has one or more explanatory variables not

included in the second stage.

• if the regression technique used in this process is the standard linear model, then this is called two-

stage least squares (2SLS).

• consider a model for the world demand for copper over the years 1951–1975.

• 2SLS model using: world consumption of copper in 1,000 metric tons (QTY), the constant dollar ad-

justed price of copper (PRI), and aluminum (ALM, which is a substitute in many industrial settings),
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an index of real per capita income base 1970 (INC), and an annual a measure of manufacturer inven-

tory change (INV). As an attempt to capture technological improvements in manufacturing over

this period, the authors use a simple integer time index 1 − 25 (TME) over the years.

• 2SLS:

Stage 1: Predicted(PRI) = 1β10 + INCβ11 + ALMβ12 + INVβ13 + TMEβ14

Stage 2: E[QTY] = 1β20 + Predicted(PRI)β21 + INCβ22 + ALMβ23.

• issue: there is evidence that technological improvement is not a linear change over these years, and

in particular that most innovations occurred early in the time period. Using an integer scale as the

2SLS model has done, imposes a strict linearity condition here.

• A histogram of the outcome variable indicates a strongly right-skewed distribution, suggesting that

the linear model might not be the best choice. In addition, there is a slight downturn for the last

production value, indicating a discontinuation of the linear trend.
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Table 10: The World Copper Market: 1951–1975

World Copper Copper Aluminum Income Inventory
Year Consumption Price Price Index Change

1951 3173.00 26.56 19.76 0.70 0.97679
1952 3281.10 27.31 20.78 0.71 1.03937
1953 3135.70 32.95 22.55 0.72 1.05153
1954 3359.10 33.90 23.06 0.70 0.97312
1955 3755.10 42.70 24.93 0.74 1.02349
1956 3875.90 46.11 26.50 0.74 1.04135
1957 3905.70 31.70 27.24 0.74 0.97686
1958 3957.60 27.23 26.21 0.72 0.98069
1959 4279.10 32.89 26.09 0.75 1.02888
1960 4627.90 33.78 27.40 0.77 1.03392
1961 4910.20 31.66 26.94 0.76 0.97922
1962 4908.40 32.28 25.18 0.79 0.99679
1963 5327.90 32.38 23.94 0.83 0.96630
1964 5878.40 33.75 25.07 0.85 1.02915
1965 6075.20 36.25 25.37 0.89 1.07950
1966 6312.70 36.24 24.55 0.93 1.05073
1967 6056.80 38.23 24.98 0.95 1.02788
1968 6375.90 40.83 24.96 0.99 1.02799
1969 6974.30 44.62 25.52 1.00 0.99151
1970 7101.60 52.27 26.01 1.00 1.00191
1971 7071.70 45.16 25.46 1.02 0.95644
1972 7754.80 42.50 22.17 1.07 0.96947
1973 8480.30 43.70 18.56 1.12 0.98220
1974 8105.20 47.88 21.32 1.10 1.00793
1975 7157.20 36.33 22.75 1.07 0.93810

YEAR QTY PRI INC ALM INV
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• Instead of the two-stage least squares linear model, a two-stage gamma GLM with θ = − 1
µ

is built

with the following specification:

Stage 1: Predicted(PRI) = g−1
[
1β10 + INCβ11 + ALMβ12

+ INVβ13 + log(TME)β14

]

Stage 2: E[QTY] = g−1
[
1β20 + Predicted(PRI)β21 + INCβ22 + ALMβ23

]

where the g−1(Xβ) is the gamma link function.
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copper.data <- as.matrix(read.table("/export/home/jgill/Book.GLM/Example.Copper/copper.dat",

header=T,row.names=1))

copper.factors <- data.frame(copper.data)

attach(copper.factors)

copper.stage1.linear <- glm(COPPERPRICE ~ INCOMEINDEX + ALUMPRICE + INVENTORYINDEX + TIME,

family=gaussian)

copper.stage2.linear <- glm(WORLDCONSUMPTION ~

copper.stage1.linear$fitted.values + INCOMEINDEX + ALUMPRICE,

family=gaussian)

copper.stage1 <- glm(COPPERPRICE ~ INCOMEINDEX + ALUMPRICE + INVENTORYINDEX + log(TIME),

family=Gamma)

copper.stage2 <- glm(WORLDCONSUMPTION ~

copper.stage1$fitted.values + INCOMEINDEX + ALUMPRICE,

family=Gamma)
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Table 11: Modeling the World Copper Market: 1951–1975

Coefficient Standard Error 95% Confidence Interval

(Intercept) 0.00080558 0.00006566 [ 0.00066904: 0.00094212]

Predicted(PRI) 0.00000449 0.00000162 [ 0.00000111: 0.00000786]

INC -0.00058689 0.00006905 [-0.00073049:-0.00044329]

ALM -0.00001082 0.00000234 [-0.00001568:-0.00000596]

Null deviance: 2.36735, df = 24 Maximized `(): -185.755

Summed deviance: 0.14290, df = 21 AIC: 379.51

• Initially the sign on the coefficient for price is surprising since a positive value implies that higher

prices are associated with greater demand which contradicts basic theory for a normal good (the

2SLS model had a negative sign). However, once we recall that the link function is necessarily act-

ing on the linear predictor, this makes sense.
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• The first difference for price using its first and third quartile (thus bracketing the interquartile

range), keeping the other two variables constant at their mean:

E[QTYQ1] = 5566.772

E[QTYQ3] = 4527.485

first difference: − 1039.287 (6)

So as price moves from the 25th percentile to the 75th percentile, the expected drop in world for de-

mand is a little over one million (1,039,287) metric tons.
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Figure 3: Diagnostics: World Copper Market Model
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Running GLMs in R

Running generalized linear models in R is remarkably simple and is setup to resemble the process for

linear models to the greatest extent possible. Instead of using the lm function, the user calls the glm

function. The basic syntax of the command is:

• CALL: glm(formula, family = gaussian, data,

weights = NULL, subset = NULL, na.action,

model = TRUE, X = FALSE, y = TRUE,

control = glm.control(epsilon=0.0001, maxit=10,

trace=FALSE), contrasts = NULL)

• FORMULA: a symbolic description of the model to be fit. For instance, the specification Y ~ X1 +

X2 + X1:X2 states that the outcome variable Y is modelled by two explanatory variables, X1 and X2,

and their interaction effect. For details about specifying formulas, see Chambers and Hastie (1993),

Section 2.3.

• FAMILY: a description of the GLM link function and subsequent error distribution in the model fit.

The glm function admits the following link function specifications:
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Binomial binomial(link=‘‘logit’’)

Normal gaussian(link=‘‘identity’’)

Gamma Gamma(link=‘‘inverse’’)

Inverse Gamma inverse.gaussian(link =‘‘1/mu2̂’’)

Poisson poisson(link =‘‘log’’)

Negative Binomial† negative.binomial(a=1,link=‘‘log’’)

Quasi-Likelihood quasi(link=‘‘identity",variance=‘‘constant’’)

Quasi-Likelihood/Binomial quasibinomial(link=‘‘logit’’)

Quasi-Likelihood/Poisson quasipoisson(link=‘‘log’’)

†Requires the Venables and Ripley MASS library extension.

• DATA: if the variables are to be taken from a different environment from which the glm call is

made, then a data frame can be specified with this parameter.

• WEIGHTS: an optional vector of user-specified regression weights to be used in the fitting process.

• SUBSET: an optional vector specifying a subset of observations to be used in the fitting process.

Use the S language subset rules for conditioning.

• NA.ACTION: a function that tells glm how to handle “NA”s. The default is the environmentally

set “options$na.action”, which can be changed by the user or overridden in the function call. Com-

mon actions include: “na.fail” and “na.omit.”

• CONTROL: adjustment of numerical parameters that are used by the IWLS algorithm

when mode-finding. glm.control$epsilon is the convergence threshold value for zero,
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glm.control$maxit is the maximum number of IWLS iterations, and glm.control$trace is

a logical value that turns on or off printed iteration information (i.e. like the Gauss software “max-

like” procedure does as a default).

• MODEL: a logical value indicating whether the designated model frame should be included as part

of the returned object.

• X,Y: logical values indicating whether the output variable vector and explanatory variable matrix

used should be returned as components of the returned object.

• CONTRASTS: an optional list of factor contrasts. See Chambers and Hastie (1993), Section 2.3,

and Venables and Ripley (1999), Section 6.2.

> options()$contrasts

unordered ordered

"contr.treatment" "contr.poly"

> N <- factor(Nlevs <- c(1,4))

> N

[1] 1 4

Levels: 1 4
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> contr.sum(N)

[,1]

1 1

2 -1

> contr.treatment(N)

2

1 0

2 1

> contr.helmert(N)

[,1]

1 -1

2 1
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> contr.poly(N)

.L

[1,] -0.7071068

[2,] 0.7071068

> N <- factor(Nlevs <- c(1,4,8))

> contr.sum(N)

[,1] [,2]

1 1 0

2 0 1

3 -1 -1

> contr.treatment(N)

2 3

1 0 0

2 1 0

3 0 1
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> contr.helmert(N)

[,1] [,2]

1 -1 -1

2 1 -1

3 0 2

> contr.poly(N)

.L .Q

[1,] -7.071068e-01 0.4082483

[2,] -7.850462e-17 -0.8164966

[3,] 7.071068e-01 0.4082483
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Multiple Imputation Using MICE

library(nnet)

library(mice)

anes.2000.mat <- read.table("http://www.clas.ufl.edu/~jgill/Turnout/nes2000.dat")

imp.2000.anes <- mice(anes.2000.mat,m=5)

anes.2000.imp.mat.1 <- complete(imp.2000.anes,1)

anes.2000.imp.mat.2 <- complete(imp.2000.anes,2)

anes.2000.imp.mat.3 <- complete(imp.2000.anes,3)

anes.2000.imp.mat.4 <- complete(imp.2000.anes,4)

anes.2000.imp.mat.5 <- complete(imp.2000.anes,5)

# 5 MODELS RUN HERE.
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coef.mat <- cbind(out.mat2[,1],out.mat2[,1],out.mat3[,1],out.mat4[,1],out.mat5[,1])

var.mat <- cbind(out.mat2[,2],out.mat2[,2],out.mat3[,2],out.mat4[,2],out.mat5[,2])^2

impute.coef.vec <- apply(coef.mat,1,mean)

between.var <- apply(coef.mat,1,var)

within.var <- apply(var.mat,1,mean)

m <- 5

impute.se.vec <- sqrt(within.var + ((m+1)/m)*between.var)




