- B. Equilibrium:
 - 1. What is the SPE?

- C. Discussion
 - 1. What do you think?
 - 2. Would the results change if we had larger payoffs?
 - 3. Various ways to interpret results
 - a. Game theory is wrong.
 - 1) More than half of the pairs did not behave as predicted.
 - b. People are altruistic.
 - 1) In other words they gave because they value giving.
 - c. Game theory is right, but people behave by norms.
 - 1) Senders might hope that the receiver they are paired with will give back some of the points that are being created.

D. Trust game with norms

- 1. Norms lead to different equilibria.
- 2. Suppose some *receivers* are inequity adverse. That is:

$$U_i = x_i - \alpha |x_i - x_j|$$

where x_i is the payoff to the receiver,

 x_j is the payoff to their sender, and

 $0 \le \alpha < 1$ is a weight on inequity.

For this example, let's assume $\alpha = 0.6$.

<u>Player 1:</u>

Action: Payoffs:

A0 = send 0

A1 = send 1

A2 = send 2

Player 1:Action:Payoffs:A0:2p + 2(1-p) = 2

- A1: 1p + 3(1-p) = 3-2p
- A2: 0p + 4(1-p) = 4-4p

So now we compare the expected value of each action pairwise (A0 to A1, A1 to A2, etc.).

<u>Player 1:</u> <u>EU₁(A1) > EU₁(A2) iff:</u> 3–2p > 4–4p 2p > 1 $p > \frac{1}{2}$

Hence, if $p > \frac{1}{2}$, then $EU_1(A1) > EU_1(A2)$. If $p \le \frac{1}{2}$, then $EU_1(A2) \ge EU_1(A1)$.

Player 1: $EU_1(A0) > EU_1(A2)$ iff: $EU_1(A0) > EU_1(A1)$ iff: 2 > 4 - 4p2 > 3 - 2p4p > 2 2p > 1 $p > \frac{1}{2}$ $p > \frac{1}{2}$ If $p > \frac{1}{2}$, then $EU_1(A0) > EU_1(A1) > EU_1(A2)$send 0.

If $p \le \frac{1}{2}$, then $EU_1(A2) \ge EU_1(A1) \ge EU_1(A0)$... send 2.

- D. Trust game with inequity adversion
 - The sender contributes 2 if he/she thinks the probability the receiver is self-interested is less than 1/2. Otherwise, he/she contributes 0.
 - 2. If $p \le 1/2$, then
 - SE = {send 2; (send back 4| norm), (send back 0| selfish)}.
 - If $p \ge 1/2$, then
 - SE = {send 0; (send back 0| norm), (send back 0| selfish)}.
 - If p = 1/2, then
 - SE = {send 1; (send back 2| norm), (send back 0| selfish)}.

- D. Trust game with norms
 - 3. Of course, the first equilibrium, and the equilibrium probabilities, depend upon α . You could get different answers with smaller α .

E. Discussion

- 1. Does this seem reasonable or is it a post-hoc justification?
- 2. Do you see the importance of properly assigning utility in analyzing the game?
- 3. Is the incomplete information game more or less *precise* than the pure self-interested game?
 - a. What are the advantages / disadvantages of each game?