Third Edition

Statistical Methods
for the
- Social Sciences

Alan Agresti

University of Florida

Barbara Finlay
Texas A & M University

PRENTICE HALL, Upper Saddle River, New Jersey 07458




Chapter 9

Linear Regression and Correlation

Table 9.1 shows recent data from Statistical Abstract of the United States for the 50
states and the District of Columbia on several variables:

Murder rate: The number of murders per 100,000 people in the population.
Violent crime rate: The number of murders, forcible rapes, robberies, and aggra-
vated assaults per 100,000 people in the population.

Percentage of the population with income below the poverty level.

Percentage of the population living in metropolitan areas.

Percentage of the population who are white.

Percentage of the population who are high school graduates or higher.
Percentage of families living below the poverty level.

Percentage of families headed by a single parent (male householders with no wife
present and with own children, or female householders with no husband present
and with own children).

All these variables are quantitative. Crime rate and murder rate are natural response
variables. One might treat the other variables as explanatory variables for these re-
sponses.

This chapter introduces methods for analyzing relationships between a pair of quan-
titative variables. We present three different, but related, aspects of such relationships:
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TABLE 9.1 Statewide Data Used to lllustrate Regression Analyses

Violent Crime Murder Metropolitan  Percent  High School Poverty  Single
State Rate Rate Residents White Graduates Rate Parent
AKX 761 9.0 41.8 75.2 86.6 9.1 14.3
AL 780 11.6 67.4 73.5 66.9 174 11.5
AR 593 10.2 44.7 829 66.3 20.0 10.7
AZ 715 8.6 84.7 88.6 78.7 15.4 12.1
CA 1078 13.1 96.7 79.3 76.2 18.2 12.5
CoO 567 58 318 92.5 844 9.9 121
CT 456 6.3 95.7 89.0 79.2 8.5 10.1
DE 686 5.0 82.7 794 71.5 10.2 114
FL 1206 8.9 93.0 83.5 74.4 17.8 10.6
GA 723 11.4 67.7 70.8 70.9 135 13.0
HI 261 38 74.7 409 80.1 8.0 9.1
TIA 326 2.3 433 96.6 80.1 10.3 9.0
ID 282 2.9 30.0 96.7 79.7 13.1 9.5
IL 960 11.4 84.0 81.0 76.2 i3.6 11.5
IN 489 7.5 71.6 90.6 75.6 122 10.8
KS 496 6.4 54.6 90.9 81.3 13.1 9.9
KY 463 6.6 48.5 91.8 64.6 204 10.6
LA 1062 203 75.0 66.7 68.3 26.4 14.9
MA 805 3.9 96.2 01.1 80.0 10.7 10.9
MD 998 12.7 92.8 68.9 78.4 9.7 12.0
ME 126 1.6 35.7 98.5 78.8 10.7 10.6
MI 792 9.8 82.7 83.1 76.8 154 13.0
MN 327 3.4 69.3 94.0 824 11.6 9.9
MO 744 11.3 68.3 87.6 73.9 16.1 10.9
MS 434 13.5 30.7 633 64.3 247 14.7
MT 178 3.0 24.0 92.6 81.0 14.9 10.8
NC 679 11.3 66.3 75.2 70.0 14.4 11.1
ND 82 1.7 41.6 94.2 76.7 11.2 8.4
NE 339 3.9 50.6 94.3 81.8 10.3 9.4
NH 138 2.0 594 980 822 9.9 9.2
NI 627 53 100.0 80.8 76.7 10.9 9.6
NM 930 8.0 56.0 87.1 75.1 17.4 13.8
NV 875 10.4 84.8 86.7 78.8 9.8 12.4
NY 1074 133 91.7 712 74.8 16.4 12.7
OH 504 6.0 81.3 87.5 75.7 13.0 11.4
OK 635 8.4 60.1 82.5 74.6 19.9 11.1
OR 503 4.6 70.0 93.2 815 11.8 11.3
PA 418 6.8 84.8 88.7 74.7 13.2 9.6
RI 402 3.9 93.6 92.6 72.0 11.2 10.8
SC 1023 10.3 69.8 68.6 68.3 18.7 12.3
SD 208 34 32.6 90.2 771 14.2 9.4
TN 766 10.2 67.7 82.8 67.1 19.6 11.2
TX 762 11.9 83.9 85.1 721 17.4 11.8
uT 301 3.1 715 94.8 85.1 10.7 10.0
VA 3 8.3 71.5 771 75.2 9.7 10.3
VT 114 3.6 27.0 98.4 80.8 10.0 11.0
WA 515 5.2 83.0 894 83.8 12.1 11.7
WI 264 4.4 68.1 92.1 78.6 12.6 104
WV 208 6.9 41.8 96.3 660 - 222 94
WY 286 34 29.7 959 83.0 13.3 10.8
DC 2922 78.5 100.0 318 73.1 26.4 22.1
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1. We investigate whether an association exists between the two variables by testing
the hypothesis of statistical independence.

2. We study the strength of their association using a measure of association called
the correlation.

3. We study the form of the relationship. Using the data, we estimate a formula that
predicts a subject’s score on the response variable from the score on the explana-
tory variable. For instance, a formula of this type predicts a state’s murder rate
from the percentage of its population living below the poverty level.

The analyses conducted in studying these three aspects of the relationship between
two quantitative variables are collectively called a regression analysis. Section 9.1 in-
troduces the use of a straight line to describe the form of the relationship. Section 9.2
presents the method, called least squares, that estimates the best line for a particular
data set. Section 9.3 describes the linear regression model, which takes into account
variability of the data about the straight line. Section 9.4 defines the Pearson correla-
tion for describing the strength of a linear relationship. Section 9.5 presents statistical
inference for a regression analysis. The final section takes a closer look at assumptions
and potential pitfalls in using regression.

9.1 Linear Relationships

The univariate methods of Chapters 5 and 6 summarized quantitative variables by their
means. Asnoted in Chapters 7 and 8, most analyses involve more than one variable and
distinguish between response and explanatory variables. This chapter presents methods
for analyzing a pair of quantitative variables, one of which is a response variable and
one of which is an explanatory variable.

Notation for Response and Explanatory Variables

Let ¥ denote the response variable and let X denote the explanatory variable.

We shall analyze how the response variable Y tends to change from one subset of
the population to another, as defined by values of X. For categorical variables, we did
this by comparing the conditional distributions of ¥ at the various categories of X, in
a contingency table. For quantitative variables, a mathematical formula describes how
the conditional distribution of Y varies according to the value of X. This type of for-
mula describes how ¥ = murder rate varies among states for different levels of X =

percent below the poverty level. For instance, does the murder rate tend to be higher
for states that have higher poverty levels?

Linear Functions

A variety of different formulas might describe how Y relates to X. Any particular for-
mula might provide a good description of the relationship or a poor one. This chapter
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introduces the simplest class of such formulas, straight lines. They are called linear
functions.

Linear Function

The formula ¥ = « + X expresses the response variable Y as a linear function of the
explanatory variable X. The formula maps out a straight-iine graph with slope 3 (beta)
and Y-intercept « (alphay).

Example 9.1 Example of a Linear Function

The formula ¥ = 3 + 2X is a linear function. This has the form ¥ = o + X with
o = 3 and 8 = 2; the Y-intercept equals 3 and the slope equals 2.

Each real number X, when substituted into the formula ¥ = 3+2X, yields a distinct
value for Y. For instance, the value X = Ohas ¥ = 3 4+ 2(0) = 3; the value X = 1
has ¥ = 3 4 2(1) = 5. Figure 9.1 plots this function. The horizontal axis, called the
X-axis, lists the possible values of the explanatory variable, X; the vertical axis, called
the Y-axis, lists the possible values of Y. The axes intersect at the point where X =0
and ¥ =0, called the origin. O

18
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Figure 9.1 Graph of the Straight
Line ¥ = 3 + 2X. The Y-intercept
is 3 and the slope is 2.

Interpreting the Y-Intercept and Slope

At X =0, the equation ¥ = o + BX simplifiesto ¥ = o + X = a + (0) = «.
Thus, the constant & in this equation is the value of ¥ when X = 0. Now, points on
the Y-axis have X = (, so the line has height « at the point of its intersection with
the Y-axis. Because of this, « is called the Y-intercept. The straight line ¥ = 3 + 2X
intersects the Y-axis at o = 3, as Figure 9.1 shows.
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The slope (3 equals the change in Y for a one-unit increase in X. That is, for two
X-values that differ by 1.0 (such as X = 0 and X = 1), the ¥ -values differ by 8. For
thelineY =3 +2X,at X =0and X = 1, the Y values are 3 and 5. These ¥ values
differ by 5 — 3 = 2, which is the value of B for this line. Similarly, two X-values that
are 10 units apart differ by 108 in their Y-values. For example, when X = 0,Y =3,
and when X = 10, Y =3 + 2(10) = 23, and 23 — 3 = 20 = 108. Figure 9.2 portrays
the interpretation of the Y -intercept and slope of a straight line.

a+ 108

o+ p

Figure 9.2 Graph of the Straight
X Line Y =a¢ + 8X. The
Y-intercept is & and the slope is §.
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One can draw the straight line by finding any two separate pairs of (X, Y) values
on the graph and then drawing the line through the points. For instance, we could use
the points just discussed: (X =0,Y =3)and (X = 1, ¥ = 5). The point on the graph
with (X =0, ¥ = 3) is three units up the Y-axis. To find the point with (X = 1, Y = 5),
we start at the origin (X = 0, Y = 0) and move one unit to the right on the X-axis and
five units upward parallel to the Y-axis (see Figure 9.1). After plotting the two points,
drawing the straight line through the two points graphs the function ¥ = 3 + 2X,

The slope describes the rate of change of the Y-values as X increases. A one-unit
increase in X corresponds to a change of 8 units in ¥, no matter what the value of
X. The larger the absolute value of 8, the steeper the line. A line with 8 = 4, such as
Y = 3 + 4X, climbs more quickly than one with 8 = 2.

Example 9.2 Straight Line for Violent Crime and Poverty

For the 50 states, consider the variables Y = violent crime rate (number of violent
crimes per 100,000 population) and X = poverty rate (percentage of state residents
living below the poverty level). The straight line ¥ = 210 + 25X approximates the
relation between these variables. The Y-intercept equals 210. This represents the vi-
olent crime rate at poverty rate X = O (unfortunately, there are no such states). The
slope equals 25. When the poverty rate increases by one percent, the violent crime rate

.
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increases by about 25 (i.e., 25 crimes per 100,000 population). Similarly, if the poverty
rate increases by 10%, the crime rate increases by about 10(25) = 250.

By contrast, if instead the explanatory variable X refers to the percentage of the
population living in metropolitan areas, the straight line approximating the relationship
is Y = 26 + 8X. The slope of 8 is smaller than the slope of 25 when poverty rate is
the predictor. A 1% change in poverty rate has a greater effect on the violent crime rate
than a 1% change in metropolitan residence. Figure 9.3 shows the lines relating the
violent crime rate to poverty rate and metropolitan residence. N

2000
1600 -

1200

Y=2800 (8=10)

Figure 9.3 Graphs of Lines
Showing Positive Relationships
(B = 0), a Negative Relationship
0 - T ' ' ' ' X {8 < 0}, and Independence

0 20 40 60 80 100 (B=0)

400

If 8 is positive, then ¥ increases as X increases; that is, large values of Y occur with
large values of X, and small values of ¥ occur with small values of X. The straight line
then goes upward, like the lines just mentioned relating violent crime rate to poverty
rate or metropolitan residence. When a relationship between two variables follows a
straight line with 8 > 0, the relationship is said to be positive.

If B is negative, then Y decreases as X increases. The straight line then goes down-
ward, and the relationship is said to be negative. For instance, the equation ¥ = 1756—
16X approximates the relationship between ¥ = violent crime rate and X = percent-
age of residents who are high school graduates. This shows a negative relationship with
slope —16. For each increase of 1.0 in the percent who are high school graduates, the
violent crime rate decreases by about 16. Figure 9.3 also shows this line.

When 8 = 0, the graph of a linear function is a horizontal line. The value of ¥
is constant and does not vary as X varies. If two variables are independent, with the
value of Y not depending on the value of X, then a straight line with 8 = O represents
their relationship. The line ¥ = 800 shown in Figure 9.3 is an example of a line with
Bg=0.
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Models

The linear function is the simplest mathematical function and provides the simplest
form for the relationship between two quantitative variables. The function ¥ = e+8X
is a model. That is, the formula provides a simple approximation for the true relation-
ship between X and Y. For a given value of X, the model predicts a value for Y. The
better these predictions tend to be, the better the model.

9.2 Least Squares Prediction Equation

Using sample data, one can estimate the linear model relating ¥ and X. The process
treats « and $ in the linear function.Y = o + BX as unknown parameters and yields
estimates of these parameters. The estimated linear function then provides predictions
about Y at fixed values for X.

Scatter Diagram

The first step of model fitting is to look at the data. A plot of the data reveals whether
a model with a straight line trend makes sense. '

The values (X, Y) of the two variables for any particular subject form a point rel-
ative to the X and Y axes. To portray graphically the sample relationship, we plot the
sample of n observations on X and Y as n points. This graphical plot is called a scatter
diagram or scatterplot.

Example 9.3 Scatter Diagram for Murder Rate and Poverty

We use the data from Table 9.1 on X = poverty rate and ¥ = murder rate throughout
the chapter to illustrate aspects of regression analysis. To check whether Y is approxi-
mately linearly related to X, we first construct a scatter diagram for the 51 observations.
Figure 9.4 shows this plot.

Each point in Figure 9.4 portrays the values of poverty rate and murder rate for a
given state. For Maryland, for instance, the poverty rate is X = 9.7, and the murder
rate is ¥ = 12.7. Its point (X, ¥) = (9.7, 12.7) has coordinate 9.7 for the X-axis and
12.7 for the Y-axis. We plot the point (9.7, 12.7) by moving from the origin 9.7 units
in the X (horizontal) direction and 12.7 units in the Y (vertical) direction. This brings
us to the spot labeled MD in Figure 9.4.

Figure 9.4 indicates that the trend of points seems to be approximated well by a
straight line. Notice, though, that one point is far removed from the rest. This is the
point for D.C., for which the murder rate was much higher than that of any state. This
point lies far from the overall trend. Figure 9.4 also shows box plots for these variables.
They reveal that D.C. is an extreme outlier on murder rate; in fact, it falls 6.5 standard
deviations above the mean. We shall see that outliers can have a serious impact on the
results of a regression analysis. O
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Figure 9.4 Scatter Diagram for ¥ = Murder Rate and X = Percentage of Residents Below the Poverty
Level, for 50 States and D.C.

The scatter diagram provides a visual means of checking whether a relationship is
approximately linear. When the relationship seems strongly nonlinear, it does not make
sense to use a straight line to model the data. Figure 9.5 illustrates such a case. This
figure shows a negative relationship over part of the range of X values, and a positive
relationship over the rest. These cancel each other out using a linear model. For such
data, one needs a different type of model, presented in Section 14.4.

Figure 9.5 A Nonlinear

Relationship, for Which It Is

Inappropriate to Use a Straight
X Line Regression Model

Prediction Equation

When the scatter diagram suggests that the linear model ¥ = o + 8X is realistic, we
estimate this unknown line. The notation
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Y =a+bX

represents a sample equation, based on the data, that estimates the linear function
Y = o + $X. In the sample equation, the Y -intercept (a) estimates the unknown Y-
intercept a of the linear model, and the slope (b) estimates the unknown slope 8.

Substituting a particular value of X into the formula a + bX provides a value, de-
noted by Y, that predicts the value of Y at that value of X. The sample equation
Y = a + bX is called the prediction equation, since it provides predictions about the
response variable Y for any value of X.

The prediction equation is the best straight line summarizing the trend of the points
in the scatter diagram. It falls closest to those points, in a certain average sense dis-
cussed later in this section. The formulas for the coefficients of this prediction equation
are

b:E(X_X)(If_Y) a:?—bf
2 (X —-X)?

If an observation has both X- and ¥ -values above their means, or both X- and Y-
values below their means, then (X — X)(Y — ¥) is positive. The slope estimate b tends
to be positive when most observations are like this, that is, when points with large X-
values also tend to have large Y-values and points with small X-values tend to have
small Y -values.

We shall not dwell on these formulas or even illustrate how to use them. The for-
mula for b is complex and is messy to use even for a small to moderate sample size.
Although a somewhat simpler computational formula exists, anyone who does any se-
rious regression modeling these days uses a computer or a calculator that has these for-
mulas programmed. For the extensions of this linear model studied in later chapters, it
is impractical to calculate prediction equations even with a calculator but very simple
to do so using statistical software. We strongly encourage that you use modern com-
puting methods, rather than hand calculation, to conduct regression analyses. To use
statistical software on a PC or other type of computer, you supply the data set and either
select the desired methods from a menu or enter certain code specifying those methods
(e.g., regression) and the options desired (e.g., scatter diagrams, prediction equation).
The appendix at the end of the text provides details.

Example 9.4 Prediction Equation for Murder Rate and Poverty

Using statistical software for the 51 observations on murder rate and poverty rate from
Table 9.1, we get the results shown in the sample printout in Table 9.2. Usually, soft-
ware provides summary statistics such as the mean and standard deviation for each
variable, as well as statistics for the regression analysis. For instance, murder rate has
Y = 8.7 and s = 10.7, indicating that it is probably highly skewed to the right. In fact,
the box plot for murder rate in Figure 9.4 shows that the extreme outlying observation
for D.C. contributes a lot to this outcome.

The estimates of « and 8 are listed under the heading “Parameter Estimate.” The
estimate of the Y -intercept is a = —10.14, listed opposite “INTERCEP.” The estimate
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TABLE 9.2 Part of Computer Printout for Fitting Linear Regression Model to 51 Observations
{including D.C.) on X = Percent in Poverty and ¥ = Murder Rate

Variable Mean std Dev Dependent Variable: MURDER

---------------------------- Parameter Standard

MURDER 8.727 10.718 . Variable Estimate Error

POVERTY 14.259 4.584

---------------------------- INTERCEP -10.1364 4.1206
POVERTY 1.3230 0.2754

of the slope is b = 1.32, listed opposite the variable name of which it is the coefficient
in the prediction equation, “POVERTY.” Therefore, the prediction equation relating
Y = murder rate to X = poverty rate is Y =a+bX =-10.14 + 1.32X.

For this prediction equation, the slope is b = 1.32. Since the slope is positive, the
sample relationship is positive. The larger the poverty rate, the larger the murder rate
tends to be. The value of 1.32 for the slope indicates that, on the average, an increase
of 1% in the poverty rate relates to an increase of 1.32 in the murder rate.

Similarly, an increase of 10% in the poverty rate corresponds to a 10(1.32) = 13.2-
unit increase in the murder rate. If one state has a 12% poverty rate and another has a
22% poverty rate, for example, the predicted number of murders per 100,000 popula-
tion is 13.2 higher in the second state than the first state. Since the mean murder rate is
8.7, it seems as if poverty rate is an important predictor of murder rate. This differen-
tial of 13 murders per 100,000 population translates to 130 per million or 1300 per 10
million population. If the two states each had populations of 10 million, the one with
the higher poverty rate would be predicted to have 1300 more murders per year. O

Effect of Outliers on Prediction Equation

Figure 9.6 plots the prediction equation from Example 9.4 over the scatter diagram. The
diagram shows that one observation, the one for D.C.,, is a serious outlier. This outlier
appears to have a substantial effect on the results, since the line seems to be pulled up
toward it and away from the center of the general trend of points.

Table 9.3 shows part of a computer printout from using the observations for the 50
states but not the one for D.C. The prediction equation equals ¥ = —.86+.58X. Figure
9.6 also shows this line, which passes more directly through the 50 points. The slope
is .58, compared to 1.32 when the observation for D.C. is included. The one outlying
observation has the effect of more than doubling the slope! An observation is called
influential if removing it results in a large change in the prediction equation. Unless
the sample size is large, an observation can have a strong influence on the slope if its
X value is low or high compared to the rest of the data.

In summary, the line for the data set including the D.C. observation seems to distort
the relationship for the other 50 states. It seems wiser to use the equation based on data
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for the 50 states alone rather than to use a single equation both for the 50 states and D.C.
This line for the 50 states better represents the overall trend for the states. In reporting
these results, we would note that the murder rate for D.C. falls outside this trend, being
much larger than this equation predicts.

Residuals

The prediction equation Y = —.86 + .58X provides predicted murder rates for states
with various levels of X = poverty rate. For the sample data, a comparison of the pre-
dicted values to the actual murder rates checks the goodness of the prediction equation.

For example, consider Massachusetts, for which X = 10.7 and Y = 3.9. The
predicted murder rate (Y) at X = 10.7is ¥ = —.86+.58X = —.86+.58(10.7) = 5.4.
The prediction error is the difference between the actual Y value of 3.9 and the predicted
valueof 5.4,0r ¥ — Y =39-54=-15. Thus, the prediction equation overestimates
the murder rate by 1.5. Similarly, for Louisiana, X =26.4 and Y = —.864+.58(26.4) =
14.6. The actual murder rate is ¥ = 20.3, so the prediction is too low. The prediction
erroris ¥ — ¥ =20.3 - 14.6 = 5.7.

The prediction errors are called residuals. For a given observation, the response

~

variable equals ¥ and the predicted value equals ¥ = a 4+ bX. The difference Y — Y
is the residual for that observation.

Residual

The difference between observed and predicted values of the response variabla,' Y -7,
is called a residual.
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TABLE 9.3 Part of Computer Printout for Fitting Linear Model to 50 States (Excluding D.C.) on
X = Percent in Poverty and ¥ = Murder Rate

Sum of Mean Parameter

Source DF Squares Square Variable Estimate
5 Model 1 307.342  307.34 INTERCEP  -0,8567
I Error 48 470.406 9.80 POVERTY . 0.5842

Total 49 777.749
Root MSE 3.1305

Dep Var Predict

[ Obs MURDER vValue Residual

: 1 9.0000 4.4599 4.5401

3 2 11,6000 9.3091 2.2909
. 3 10.2000 10.8281 -0.6281
. 4 8.6000 8.1406 0.4594
; 5 13.1000 9.7765 3.3235
. 6 5.8000 4.9273 0.8727
|

Table 9.3 shows the murder rates, the predicted values, and the residuals for some
of the states. A positive residual results when the observed value Y is larger than the
predicted value Y,andY -7 > 0. A negative residual results when the observed value
is smaller than the predicted value. The smaller the absolute value of the residual, the
better is the prediction, since the predicted value is closer to the observed value.

LA

20 A
Murder Residual
Rate for LA

10 . 15 20 25
Figure 9.7 Prediction Equation

Poverty Rate and Residuals
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Graphically in the scatter diagram, the residual for an observation is the vertical
distance between the point for the observation and the prediction line. Figure 9.7 il-
Tustrates this for the murder rate data for the 50 states. For example, the observation
for Louisiana is the point with (X, Y) coordinates (26.4, 20.3). The prediction is rep-
resented by the point (26.4, 14.6) on the prediction line corresponding to substitut-
ing X = 26.4 into the prediction equation ¥ = —.86 + .58X. The residual is the
difference between the observed and predicted points, which is the vertical distance
Y - ¥ =203-14.6=5.7.

Method of Least Squares ‘

Each observation in a sample has a residual. Some residuals are positive, some are
negative, and their average equals 0. Just as deviations of observations from their mean
Y satisfy (¥ — ¥) = 0, so is the prediction equation defined so that (¥ — Y)=0.
If the prediction line falls close to the points in the scatter diagram, the residuals
tend to be small. We summarize the size of the residuals by the sum of their squared
values. This quantity, denoted by SSE, equals '

SSE = Z(Y —?

In other words, the residual is computed for every observation in the sample; eachresid-
ual is squared, and then SSE is the sum of these squares. The symbol SSE is an abbre-
viation for the sum of squared errors. This terminology refers to the use of the residual
as a measure of prediction error from using ¥ to predict ¥. The measure SSE is also
called the residual sum of squares. It describes the variation of the observed points
around the prediction line.

The better the prediction equation, the smaller the residuals tend to be and, hence,
the smaller the summary measure SSE tends to be. Any particular equation has a cor-
responding set of residuals and a value of SSE. The prediction equation specified by
the usual formulas for estimates ¢ and b of @ and 8 is the one with the smallest value
of SSE out of all possible linear prediction equations.

Method of Least Squares, Least Squares Estimates

The method of least squares provides the prediction equation ¥ = a + bX having the
minimal value of SSE = (Y — Y):. The least squares estimates a and b are the
vaiues determining the prediction equation for which the sum of squared errors SSE is
a minimum,

The best prediction equation, according to the least squares criterion, is the one with
the smallest sum of squared residuals. Because of this criterion, the prediction line
Y = a + bX is called the least squares line. If we square the residuals (such as those
in Table 9.3) for the least squares line ¥ = —.86 + .58X and then sum them, we get

SSE=) (¥ — ¥)? = (454 + (229" +--- = 4704
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This value of SSE is smaller than the value of SSE for any other straight line predictor,
such as ¥ = —.88+ .60X. In this sense, the observed points fall closer to this line than
to any other line. Software for regression lists the value of SSE. Table 9.3 reports it in
the “Sum of Squares” column, in the row labeled “Error.” In some software, such as
SPSS, this is labeled as “Residual” in the sum of squares column.

9.3 The Linear Regression Model

For the model Y = o + BX, each value of X corresponds to a single value of Y. Such
a model is said to be deterministic. 1t is unrealistic in social science research, since
variability occurs in Y -values among subjects with the same X-value.

For example, let X = number of years of education and ¥ = annual income. Con-
sider the subjects having X = 12 years of education. They do not all have the same
income, since income is not completely dependent upon education. Instead, there is
a probability distribution of annual income for individuals with X = 12. This distri-
bution refers to the variability in the Y values at a fixed value of X, so it is a condi-
tional distribution. Similarly, a separate conditional distribution applies for those with
X = 13 years of education, and others apply for those with each possible value of X.
The conditional distributions of income differ at the different levels of education. The
mean of the conditional distribution probably is higher at higher levels of education.

A probabilistic model for the relationship between X and Y is one that allows for
variability in the values of Y at each value of X. We now show how a linear function
is the basis for a probabilistic model.

Linear Regression Function

A probabilistic model uses o 4+ 8 X to represent the mean of Y, rather than Y itself, as a
function of X. For a given value of X, o + 8X represents the mean of the conditional
distribution of ¥ for subjects having that value of X.

Expected Value of Y

Let E(Y) denote the mean of a conditional distribution of ¥. The symbol E represents
expected value, which is another term for the mean.

We now use the form of equation
EX)y=u+8X

to model the relationship between X and the mean of the conditional distribution of Y.
For instance, let Y = violent crime rate and X = poverty rate for the 50 states. The
probabilistic model E(Y) = 210+ 25X is more plausible than the deterministic model
Y =210+ 25X. At X = 10, for instance, E(Y) = 210 + 25(10) = 460. For states
having 10% of their residents below the poverty level, the model predicts that the mean
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violent crime rate is 460, Different states having X = 10 would have different violent
crime rates, but the average response would be about 460.

An equation of the form E(Y) = o + $X that relates values of X to the mean of
the conditional distribution of Y is called a regression function.

Regression Function

A regression function is a mathematical function that describes how the mean of the
response variabie changes according to the value of an explanatory variable.

The function E(Y) = « + BX is called a linear regression function, since it uses
a straight line for the relationship between the mean of Y and the values of X. The
Y-intercept o and the slope B are called the regression coefficients for the linear re-
gression function.

In practice, the parameters of the linear regression function are unknown. Least
squares provides the sample prediction equation Y = a + bX. Ata fixed value of X,
Y = a+bX estimates the mean of Y for all subjects in the population having that value
of X.

Describing Variation About the Regression Line

For each fixed value of X, there is a conditional distribution of ¥Y-values. The mean of
that distribution equals E(Y) = a + 8X. The linear regression mode} has an additional
parameter o describing the standard deviation of that distribution. That is, o measures
the variability of the ¥ values for all subjects having the same X-value. We refer to o
as the conditional standard deviation.

Example 9.5 Income Variation for Education Predictor

Suppose the linear regression model E(Y) = —5 4+ 3X with 0 = 13 describes the
relationship between Y = annual income, in thousands of dollars, and X = number of
years of education. According to this model, for individuals with X years of education,
their incomes have a mean of E(Y) = —5 + 3X and a standard deviation of 13.

For instance, those having a high school education (X = 12) have a mean income of
E(Y) = —543(12) = 31 and a standard deviation of 13. If the conditional distribution
of income is approximately bell-shaped, then about 95% of the incomes fall between
$5000 and $57,000. These are the values that are two standard deviations from the
mean; that is, 31 — 2(13) = 5 and 31 + 2(13) = 57. Similarly, those with a college
education (X = 16) have a mean annual income of E(Y) = —543(16) = 43 thousand
dollars, with about 95% of the incomes falling between $17,000 and $69,000.

The slope of 8 = 3 implies that mean income increases 3 thousand dollars for
each year increase in education. Figure 9.8 pictures this linear regression model with o
= —5, B = 3, and o = 13. That figure plots the regression function E(Y) = —5 +3X
and the conditional income distributions at X = 8, 12, and 16 years.
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In Figure 9.8, each conditional distribution is normal, and each has the same condi-
tional standard deviation, ¢ = 13. In practice, of course, the conditional distributions
would not be exactly hormal, and the standard deviation need not be the same for each.
In fact, any particuldr model never holds exactly in practice. It is merely a simple ap-
proximation for reality. When we have sample data, we can check whether a particular
model is realistic by checking the fit of the prediction equation on the scatter diagram.

Estimating Conditional Variation

b1 This section has assumed that the mean of Y is related to X by a linear regression equa-
: tion and that it, therefore, makes sense to use a straight line to estimate that equation.
| The optimality of the least squares estimates is based partly on the further assumption
| that the standard deviation o of the conditional distribution of Y is identical at the var-
ious values of X. :

The conditional standard deviation ¢ refers to the variability of ¥ values about the
conditional population mean E(Y) = a + X for all subjects with the same value of
LB X. To estimate o, we use the numerical value for SSE= > (Y — Y)2, which measures

i sample variability about the least squares line. The estimate is

|

|

|

,_ [SSE _ [z -ty
i “Yn-2"YV n-2

} ) Example 9.6 Estimating Variability for Murder Rates

We return to the analysis of ¥ = murder rate and X = poverty rate, for the 50 states.

. ' From Section 9.2 and Table 9.3, the prediction equation is Y = —.86 + .58X, and the

- sum of squared errors in using X to predict ¥ equals SSE = 470.4. The estimate of the
conditional standard deviation is

l

i . SSE V/470.4

| = = =31
‘fi
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The model predicts that at any fixed value X of poverty rate, the murder rates vary
around a mean of —.86 + .58X with a standard deviation of 3.1.

At X = 20, for instance, the conditional distribution of murder rates has an esti-
mated mean of —.86 4 .58(20) = 10.7 and standard deviation of 3.1. For an approxi-
mately bell-shaped distribution, about 95% of the observations fall within two standard
deviations of the mean. Then, for a particular value of X, most murder rates fall within
about 26 = 2(3.1) = 6.2 of the true mean murder rate at that value of X. 0

Chapter 14 shows how to check the constant variation assumption, through analy-
sis of the residuals. A quick check with the scatter diagram of whether the variability
around the fitted line is fairly constant for various values of X is also a way to eval-
uate whether the assumption is reasonable. If it is, & describes the variability of the
observations about the regression line, at any fixed X value. Otherwise, & provides a
measure of average vanability about the line.

Conditional Versus Marginal Variation

From Sections 3.3 and 5.1, a sample point estimate of the standard deviation of a vari-

able Y is given by
o (Y —-Y)?
N n—1

This is the standard deviation of the marginal distribution of ¥, since the formula makes
no reference to any other variable X. To emphasize that the standard deviation of the
marginal distribution of ¥ depends on values of Y alone, the remainder of the text de-
notes it by sy in 2 sample and oy in a population. It differs from the standard deviation
of the conditional distribution of Y, for a fixed value of X, which we denote by & for
the sample and o for the population.

For the data on murder rates for the 50 states, the marginal standard deviation is
sy = 4.0 (Itis 10.7 if D.C. is included!), whereas the conditional standard deviation is
& = 3.1. Typically, there is less spread in Y at a fixed value of X than there is totaled
over all such values. Thus, the conditional standard deviation of Y is usually less than
the marginal standard deviation of Y.

For another example, the marginal distribution of college GPAs (Y') at a particular
university may primarily fall between about 1.0 and 4.0, perhaps having a standard de-
viation of oy = .60. For those students with a high school GPA (X} of 3.8, however,
the conditional distribution of college GPAs might cluster between 2.7 and 4.0, perhaps
having o = .25. Figure 9.9 illustrates the distinction between the marginal and condi-
tional distributions and their standard deviations, the conditional distribution typically
being less disperse.

The term (n — 2) in the denominator of & is called the degrees of freedom (df)
for the estimate. In general, when a regression equation has p unknown parameters,
then df = n — p. The linear model E(Y) = « + BX has two parameters (o and
B), so df = n — 2. The problem studied in Chapter § of estimating a single mean
corresponds to estimating the parameter in the simpler regression model, E(Y) = pu,
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Figure 9.9 Marginal and Conditional Distributions

with a single parameter. Thus, the estimate sy of the standard deviation of the marginal
distribution has df = n — 1.

Table 9.3 lists SSE = 470.4 and its degrees of freedom, df = n -2 = 50 -2
= 48. The ratio of these, §2 = 9.80, is listed on the printout and called the “Mean
Square Error.” This is often abbreviated by MSE. Its square root is the estimate of the
conditional standard deviation of ¥, & = +/9.80 = 3.13, which is listed under the
heading “ROOT MSE.” '

9.4 Measuring Linear Association—The Correlation

The linear regression model uses a straight-line prediction equation to describe the re-
lationship between two quantitative variables. This section introduces two measures of
the strength of linear association between the variables.

The Slope and Strength of Association

The slope b of the prediction equation tells us the direction of the association; its sign
indicates whether the prediction line slopes upward or downward as X increases. That
is, it indicates whether the association is positive or negative. The slope does not, how-
ever, directly tell us the strength of the association. The reason for this is that the nu-
merical value of the slope is intrinsically linked to the units of measurement of the vari-
ables. )

For example, consider the prediction equation ¥ = —.86 + .58X for Y = murder
rate and X = poverty rate for the 50 states. Suppose we measure murder rate as the
number of murders per 1,000,000 population instead of 100,000 population. A one-
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unit increase in the poverty rate corresponds to a b = .58 increase in the predicted
number of murders per 100,000 people, which is equivalent to a 5.8 increase in the
predicted number of murders per 1,000,000 people. Thus, if ¥ = number of murders
per 1,000,000 population, the slope of the prediction equation is 5.8 instead of .58. The
strength of the association is the same in each case, since the variables and data are the
same; only the units of measurement for the response variable differed.

In summary, the slope b of the prediction equation depends on the units of meas-
urement. It doesn’t directly indicate whether the association is strong or weak, since
we can make b as large or as small as we like by an appropriate choice of units.

The slope is useful for comparing effects of two predictors having the same units.
For instance, the prediction equation for the 50 states relating the murder rate to per-
centage living in metropolitan areas is 3.28 + .06X. A one-unit increase in the per-
centage living in metropolitan areas corresponds to a .06 increase in the murder rate,
whereas a one-unit increase in the percentage below the poverty level corresponds to
a .58 increase in the murder rate. A change of 1% in poverty rate has a much greater
effect on murder rate than a change of 1% in metropolitan residence.

The measures of association we now study do not vary according to the units of
measurement. Like the measures of association presented in the previous chapter for
categorical data, their magnitudes indicate the strength of association.

The Pearson Correlation

The measure of association for quantitative variables known as the Pearson correla-
tion, or simply the correlation, is a standardized version of the slope. It is a type of
slope for which the value, unlike that of b, does not depend on the units of measurement.
The standardization adjusts the slope b for the fact that the marginal distributions of X
and Y have standard deviations that depend on the units of measurement for X and Y.
The correlation is the value the slope assumes if the measurement units for the two vari-
ables are such that their standard deviations are equal.
Let sx and sy denote the sample standard deviations of X and ¥,

Ay —_ V2
we B o RO

Pearson Correlation

The Pearson correlation, denoted by 7, is related to the slope b of the prediction equa-

tion ¥ = a + bX by
&)
r={—1b
Sy

Multiplying the slope by the ratio of the sample standard deviations provides a stand-
ardized measure. When the sample dispersions are equal (sx = sy), the correlation is
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the same as the slope. The most common case of this is when the variables are stand-
ardized by converting their values to z-scores, in which case both standardized vari-
ables have standard deviations of 1.0. Because of this relationship between r and b,
the Pearson correlation is also called the standardized regression coefficient for the
regression model E(Y) =« + BX.

Example 9.7 Correlation Between Murder Rate and Poverty Rate

For the 50 states, the prediction equation relating ¥ = murder rate to X = poverty rate
is ¥ = —.86-+.58X. From ordinary calculations for a standard deviation, or better yet,
reading the value off a printout, the standard deviation of poverty rate is sx = 4.29, and
the standard deviation of murder rate is sy = 3.98. The Pearson correlation for these

data equals
Sy 4,29
=|—=)b=|—](58)=.6
’ (sy) (3.98)( ) =63

We will interpret this value after studying the properties of the correlation. a

Properties of the Pearson Correlation

e The correlation is valid only when a straight line is a reasonable model for the
relationship. Since r is proportional to the slope of a linear prediction equation,
it measures the strength of the linear association between X and Y.

e —1 < r < 1. The standardized version of the slope, unlike b, must fall between
—1 and +1. The reason for this will be seen later in the section.

e r has the same sign as b. Since r equals the slope b multiplied by the ratio of two
{positive) standard deviations, the sign is preserved. Thus, » > 0 when the vari-
ables are positively related, and » < O when the variables are negatively related.
Also, r = 0 for those lines having b = 0. So, when r = (, there is not a linear
increasing or linear decreasing trend in the relationship between X and Y.

e r = 1 when all the sample points fall exactly on the prediction line. These
correspond to perfect positive and negative linear associations. There is then no
prediction error when the prediction equation ¥ = a + bX predicts the value of
Y.

e The larger the absolute value of r, the stronger the degree of linear association.
Two variables with a correlation of —.80 are more strongly linearly associated
than two variables with a correlation of .40, for example. Figure .10 shows scat-
ter diagrams having a variety of values for r. Again, we emphasize linear asso-
ciation, since r is not designed to describe the relationship when it is curvilinear.
In that case, as shown in Figure 9.11, the least squares line may be completely
or nearly horizontal, and r = 0 when b = 0. A low absolute value for r does
not then imply that the variables are unassociated, but that the association is not
linear.

e The value of r does not depend on the variables’ units. For example, if Y is the
number of murders per 1,000,000 population instead of per 100,000 population,
we obtain the same value of r = .63,
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Figure 9.10 Scatter Diagrams
for Different Correlation
Coefficients
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Figure 9.11 Scatter Diagram for
Which r = 0, Even Though There
Is a Strong Curvilinear
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X

¢ The correlation, unlike the slope b, treats X and Y symmetrically. The predic-
tion equation using Y to predict X has the same correlation as the one using X to
predict Y. When murder rate predicts poverty rate, the correlation is the same as
when poverty rate predicts murder rate; r = .63 in both cases.

e We now further interpret the correlation as a standardized slope. We can rewrite
the equality r = (sx/sy)b as sxb = rsy. Now, the slope b is the change in
the predicted value of ¥ for a one-unit increase in X. An increase in X of sx
units relates to a change in the predicted value of ¥ of sxb units. (For instance,
if sy = 10, an increase of 10 units in X corresponds to a change in Y of 10b.)
See Figure 9.12. Since sxb = rsy, an increase of one standard deviation in X
corresponds to a change of r standard deviations in the Y variable. The larger
the absolute value of r, the stronger the association, in the sense that a standard

deviation change in X corresponds to a greater proportion of a standard deviation
changein Y.

Example 9.8 Regression Toward the Mean

Sir Francis Galton, the British statistical scientist who discovered the basic ideas of
regression in the 1880s, noted that the correlation between X = father’s height and
Y =son’s height (or between X = mother’s height and Y = daughter’s height) is about
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Y

Figure 9.12 An Increase of sx Units in
X Corresponds to a Change of rsy Units
X in¥Y

.5. From the last property, a standard deviation change in parent’s height corresponds
to half a standard deviation change in child’s height.

For a parent of average height, the child’s height is predicted to be average. If, on
the other hand, the parent is a standard deviation above average in height, the child is
predicted to be half a standard deviation above average. If the parent is two standard
deviations below average in height, the child is predicted to be one standard deviation
below average.

Since r is less than 1, a ¥ value is predicted to be fewer standard deviations from its
mean than X is from its mean. Tall parents tend to have tall children, but on the average
not quite so tall. For instance, if you consider all fathers with height 7 feet, perhaps their
sons average 6 feet 5 inches—taller than average, but not so extremely tall; if you con-
sider all fathers with height 5 feet, perhaps their sons average 5 feet 5 inches—shorter
than average, but not so extremely short. In each case, there is a regression toward the
mean. This is the origin of the name for regression analysis. O

For the data on X = poverty rate and ¥ = murder rate, the correlation of r = .63
implies that the variables are positively related. A standard deviation increase in the
poverty rate corresponds to a .63 standard deviation increase in murder rate. The change
of .63 standard deviations is independent of whether murder rate is measured as mur-
ders per 1000 population, murders per 10,000 population, or whatever. It is the same
real amount regardless of the units of measurement. If 7 had been only .20, say, the as-
sociation would have been much weaker; a standard deviation increase in poverty rate
then corresponds to less than one-third as large a change in the predicted murder rate.

The correlation is useful for comparing relationships for variables measured with
different units. Another potential predictor for murder rate is the mean number of years
of education completed by adult residents in the state. Poverty rate and education have
different units, so a one-unit change in poverty rate is not comparable to a one-unit
change in education.. Thus, their slopes from the separate prediction equations are not
comparable. The correlations are comparable. Suppose the correlation of education
with murder rate is —.30. Since the correlation of poverty rate with murder rate is .63,
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and since .63 > | —.30]|, murder rate is more strongly associated with poverty rate than
with education.

The properties of the Pearson correlation are similar to those of the ordinal measure
of association gamma (Section 8.5). It falls between —1 and +1, and larger absolute
values relate to stronger associations. The correlation of .63 between murder rate and
poverty rate is moderately strong. Incidentally, the Pearson of Pearson correlation is
Karl Pearson, the British statistical scientist who proposed r as an estimate of the true
correlation in 1896, just four years before proposing his chi-squared test of indepen-
dence for contingency tables.

A Proportional Reduction in Error Measure

Another measure of association between two quantitative variables uses the propor-
tional reduction in error (PRE) formulation introduced in Section 8.7. The strength of
association between an explanatory variable X and a response variable Y is judged by
the goodness of X as a predictor of Y. If one can predict ¥ much better by substituting

X-values into the prediction equation Y = a+bX than without knowing the X-values,
the variables are strongly related.

This measure of association, like all PRE measures, has four elements:

e Rule 1 for predicting Y without using X.
e Rule 2 for predicting ¥ using information on X.

e A summary measure of prediction error for each rule, E; for errors by rule 1 and
E; for errors by rule 2.

¢ The difference in the number of errors with the two rules is E; — Es. Converting

this reduction in error to a proportion provides the definition of the measure as
the proportional reduction in error,

Ey— E,
Ey

PRE =

Rule I (Predicting ¥ without using X): The best predictor is ¥, the sample mean.
The one number that is closest to all the observations on Y, in an aggregate sense,
isY.

Rule 2 (Predicting Y using X): When the relationship between X and Y is linear,
the prediction equation ¥ = a + bX provides the best predictor of Y. For each
subject, substituting the X-value into this equation provides the predicted value of
Y. If X is correlated with Y, this provides better predictions than the crude predictor
Y for rule 1, which i ignores the tendency for Y to change as X changes.

Prediction Errors: The prediction error for each subject is the difference between
the observed and predicted values of ¥. The prediction error using rule 1 is ¥ — ¥,
and the prediction error using rule 2 is ¥ — ¥, the residual. For each predictor, some
prediction errors are positive, some are negative, and the sum of the errors equals
0. We summarize the prediction errors by their sum of squared values,
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E =Y (observed Y value — predicted Y value)®

For rule 1, the predicted values all equal Y. The total prediction error equals

B =) (Y -7y

This is called the total sum of squares of the Y -values about their mean. We denote this
by TSS. For rule 2, the predicted values are the ¥ values from the prediction equation.

The total prediction etror equals

E2=Z(Y-f’)2

We previously denoted this by SSE, the sum of squared errors.

When a strong linear relationship exists between X and Y, the prediction equa-
tion provides predictions (¥) that are much better than ¥, in the sense that the sum of
squared prediction errors is substantially less. Figure 9.13 shows graphical representa-
tions of the two predictors and their prediction errors. For rule 1, the same prediction
(Y) applies for the value of Y, regardless of the value of X. For rule 2 the prediction
changes as X changes, and the prediction errors tend to be smaller. :

Rule 1

Y Prediction error

Y-¥ ‘
Predictor fgr ) N

rule 1

e, ——

et

e — — =

I
S
7 : -

TSS=E,

+ Sum of squared errors

X

Rule 2
. Prediction error

(”—f’)\-:

Predictor for
rule 2

+ Sum of squared errors
SSE=FE,

X

Figure 9.13 Graphical Representation of rule 1 and Total Sum of Squares Ey = T'§ §= SY - 7)?,
rule 2 and Residual Sum of Squares E; = SSE = Y (¥ — ?)2

Definition of Measure: The proportional reduction in error from using the linear
prediction equation instead of ¥ to predict Y is called the coefficient of determi-
nation. 1t is denoted by r2. The PRE formula for r2 is

v

2=El—Ez=TSS—SSE=Z(Y—?)2—Z(Y—f)2

E;

TSS

T(Y -1
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Properties of Coefficient of Determination

We use the notation r? for this measure because, in fact, it equals the square of the Pear-
son correlation r. If we know the correlation, it is simple to calculate the coefficient of
determination. The PRE formula above is useful for interpreting »2, but it is not needed
for its calculation. '

The coefficient of determination, like the Pearson correlation, measures the strength
of linear association between X and Y. We emphasize linear because r? compares the
linear prediction equation to ¥ for making predictions.

Example 9.9 72 for Murder and Poverty Rates

- The correlation between poverty rate and murder rate for the 50 states is r = .629. The
coefficient of determination is, therefore, r? = (.629)? = .395. For predicting murder
rate, the linear prediction equation Y = —.86 + .58X has 39.5% less error than ¥ .

One can also calculate 72 directly from the definition, Software for regression rou-
tinely provides tables of sums of squares, such as shown in part of Table 9.3. From it,
the sum of squared errors using the prediction equation is SSE = } (¥ — 17)2 = 470.4;
the total sum of squares is TSS = 3 (¥ — It’)2 = 777.7 (Alternatively, if we aiready
know sy = 3.98, then } (¥ — ¥)? = (n — 1)s2 = 49(3.98)2). Thus,

, TSS—-SSE 777.7-4704 3073
r= = = = .395
TSS 771.7 777.7

Normally, it is unnecessary to perform this computatioﬁ, since most software reports r
or 2 or both. =

The properties of the coefficient of determination r? follow directly from those of
the Pearson correlation r.

e Since —1 < r < 1, r? falls between 0 and 1.

¢ The minimum possible value for SSE is 0, in which case r*> = TSS/TSS = 1.
For SSE = 0, all sample points must fall exactly on the prediction line. .In that
case, there is no prediction error using X to predict Y. This condition corresponds
tor = %xI1.

o If SSE = TSS, then r? = 0, in which case the slope b = 0 also. Now, SSE can
be no larger than TSS, since the least squares line provides the minimum sum of
squared errors about a line. When the least squares slope b = 0, the Y-intercept
a equals ¥ (since a = ¥ — bX, which equals Y when b = 0), so that ¥ = ¥ for
all X. The two prediction rules are then identical, so that SSE=TSS andr2 = 0. -

e The closer r2 is to 1, the stronger the linear association, in the sense that the more
effective the least squares line Y = a + bX is relative to ¥ in predicting the
response variable.

¢ r? does not depend on the units of measurement.

e r? takes the same value when X predicts ¥ as when Y predicts X.
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Conditional Versus Marginal Variability

To summarize, the Pearson correlation r falls between —1 and +1. It indicates the di-

rection of the association, positive or negative, through its sign. It is a standardized

| slope, indicating what the slope equals for units of measurement such that X and Y are

L i equally disperse. A one standard deviation change in X corresponds to an r standard

1 - deviation change in Y. The square of the correlation has a proportional redgction in er-

. ror interpretation related to the reduction in error from predicting ¥ using ¥ = a +5bX
rather than Y. _

The total sum of squares, TSS = > (¥ — Y)?, summarizes the variability of the ob-
| servations on Y, since this quantity divided by n — 1 is the sample variance s2 of the ¥-
} values. Similarly, SSE=) (¥ — ¥)? summarizes the variability around the prediction

' equation, which refers to variability for the conditional distributions. When r% = .39,
' the variability in ¥ using X to make the predictions (via the prediction equation) is 39%
‘ _ less than the overall variability of the ¥ values. Thus, the r2 result is often expressed as
! “X explains 39% of the variability in Y or “39% of the variance in Y is explained by its

linear relationship with X.” Roughly speaking, the variance of the conditional distri-
bution of ¥ for a given X is 39% smaller than the variance of the marginal distribution
of Y.

When two variables X and Y are strongly associated, the variation in the conditional
distributions is considerably less than the variation in the marginal distribution. For
instance, the estimated conditional standard deviation ¢ is then much smaller than the
sample marginal standard deviation sy of Y. Figure 9.9 illustrated this.

Sections 9.1-9.3 showed how a linear function can represent the form of relationships
between quantitative variables. Section 9.4 used the Pearson correlation and its square
to describe the strength of the association. These parts of a regression analysis are de-
scriptive. We now present inferential methods for the parameters in regression models.

A test of whether the two quantitative variables are statistically independent has
‘ the same purpose as the chi-squared test for qualitative variables. More usefully, one
| | ¥ can construct a confidence interval for the slope 8 of the regression equation or for
j | the population Pearson correlation. These inferences enable us to judge whether the
i variables are associated and to estimate the direction and strength of the association.

!
|
l 9.5 Inferences for the Slope and Correlation

| Assumptions for Statistical Inference

The statistical inferences presented in this section make the following assumptions:

I
{
?
| e The mean of Y is related to X by the linear equation E(Y) = o + 8X.
‘ e The conditional standard deviation is identical at each X -value.
{’ ! ; o The conditional distribution of ¥ at each value of X is normal.

e The sample is selected randomly.
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The first assumption states that the linear regression model is valid. The second as-
sumption is one under which the least squares estimates are optimal. The third assump-
tion is needed for the standardized version of the sample slope or correlation to have a
t sampling distribution. In practice, of course, none of these assumptions is ever satis-
fied exactly. For large samples, the normality assumption is unimportant. If the second
assumption is violated, other estimates may be more efficient than least squares, but
the methods we discuss here are still approximately valid. The first and last assump-
tions are very important. If the true relationship deviates greatly from a straight line,
for instance, it does not make sense to use a slope or a correlation to describe it.

Test of Independence

Under these assumptions, suppose the mean of Y is identical at each X-value. In other
words, the normal conditional distribution of Y is the same at each X-value. Then,
the two quantitative variables are statistically independent. For the linear regression
model E(Y) = « + BX, this means that the slope B of the regression line equals 0

(see Figure 9.14). The null hypothesis that the variables are statistically independent is
HO . ﬁ = 0. :

E(Y)=uo (all x)

e

Figure 914 X and Y Are
Statistically Independent When the
True Slope Equals 0

X

We normally test independence against the two-sided alternative hypothesis
H,: ﬁ % 0. Qccasmnally we use a one-sided alternative, H,: 8 > Oor H,: g < 0, to
predict the direction of the association. The test statistic in either case equals

b

t = -~
Op
where &, denotes the standard error of the sample slope b. The form of the test statistic

is the usual one for a ¢ or z test. We take the estimate b of the parameter 8, subtract
the null hypothesis value of the parameter (B = 0), and divide by the standard error of
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N the estimate b. Under the assumptions, this test statistic has the ¢ sampling distribution
with df = n — 2. |
i The formula for the estimated standard error of b is

~

| ~ g 5

| _
I Gb=\/§(—;)—(f)2——si n—1

This depends on the point estimate & of the standard deviation of the conditional dis-
tributions of Y. From Section 9.3, this estimate is

] . [SSE
l ' 7= n—2

called the root mean square error by most software.
The smaller the standard deviation of the conditional distributions, the more pre-
cisely b estimates £. A small & occurs when the data points show little variability about
- the prediction equation. Also, the standard error of b is inversely related to (X —X )2,
_ the sum of squares of the observed X-values about their mean. This sum increases,
N and hence b estimates 8 more precisely, as the sample size n increases and when the
X -values are more highly spread out.
As in the two-sided ¢ test for a mean, the P-value for the alternative H; : 8 # 0
| is the two-tail probability from the ¢ distribution (Table B). The degrees of freedom
| ] for the ¢ sampling distribution are the same as the df of the estimate &, namely, the
B denominator n — 2. When df > 30, recall that the ¢ distribution is very similar to
| the standard normal distribution. We can then treat the ¢ test statistic as a z statistic
and approximate the P-value using the normal probability table (Table A). Computer
software provides the appropriate P-value for any value of df .

Exampie 9.10 Regression for Selling Price of Homes

i What factors affect the selling price of a house? Table 9.4 shows 93 observations on
a home sales in Gainesville, Florida, in January 1996. Variables listed are selling price (in
f - thousands of dollars), size of house (in thousands of square feet), number of bedrooms,
. | B number of bathrooms, and whether the house is newly built. For now, we use only the

l | data on ¥ = selling price and X = size of house. _
L Since these 93 observations come from one city alone, we cannot use them to make
inferences about the relationship between X and Y in general. The houses sold are not
! 1 even a random sample of homes in Gainesville. Nevertheless, we treat them as a ran-
: dom sample of a conceptual population of home sales in this market in order to analyze

- how these variables seem to be related.
|8 Figure 9.15 shows a scatter diagram of selling price and size of house, with a box
i plot for each variable. The diagram displays a strong positive trend, and the model
il E(Y) = a + BX seems appropriate. A couple of the points are severe outliers on each
ﬁ . variable, however, and one of them falls rather far from the overall trend; we discuss
? h this abnormality in Section 14.5, which introduces an alternative model for these data
: that does not assume constant variability around the regression line.
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TABLE 9.4 Selling Prices and Related Factors for a Sample of Sales of Homes in Gainesville, Florida

P S Be Ba New P S Be Ba New P S Be Ba New

485 110 3 1 0 760 166 3 2 0 1080 179 4 2 1
550 10t 3 2 0O 318 133 3 2 o0 1075 18 3 2 0
680 145 3 2 0 845 134 3 2 0 1099 206 4 2 1
1370 240 3 3 0 835 140 3 2 0 1100 176 4 2 0
3004 330 4 3 1 860 105 2 2 1 1200 162 3 2 1
175 40 1 1 0 39 158 3 2 1 1150 180 4 2 1
196 128 3 1 0 89 158 3 2 1 1134 19 3 2 0
2%5 74 3 1 0 89 158 3 2 1 1149 157 3 2 0 |
48 78 2 1 0 879 17t 3 2 0 1150 219 3 2 O |
20 97 3 10 881 210 3 2 0 1150 207 4 2 O |
280 84 3 1 0 859 127 3 2 0 1179 199 4 2 0
499 108 2 2 0 895 134 3 2 0 1100 155 3 2 0 s
599 99 2 1 0 874 125 3 2 0 1150 167 3 2 0 |
615 1.01 3 2 0 879 168 3 2 0 1240 240 4 2 0
600 134 3 2 0 880 155 3 2 0 1299 179 4 2 1
659 122 3 1 0 90 155 3 2 0 1240 18 3 2 0
679 128 3 2 0 90 136 3 2 1 1280 18 3 2 1
689 129 3 2 0 999 151 3 2 1 1324 200 4 2 1
699 152 3 2 0 955 154 3 2 1 1393 205 4 2 1 |
05 125 3 2 0 985 151 3 2 0 1393 200 4 2 1
729 128 3 2 0 1001 18 3 2 0 1397 203 3 2 1
75 128 3 10 999 162 4 2 1 1420 212 3 3 0 ]
720 136 3 2 0 1019 140 3 2 1 1413 208 4 2 1 |
710 120 3 2 0 1019 192 4 2 0 1475 219 4 2 0
760 146 3 2 0 1023 142 3 2 1 1425 240 4 2 0 3
729 156 4 2 0 1108 156 3 2 1 1480 240 S 2 0 ¥
730 122 3 2 0 1050 143 3 2 1 1490 305 4 2 0
700 140 2 2 0 979 200 3 2 0 1500 204 3 3 0 :
760 115 2 2 0 1063 145 3 2 1 1729 225 4 2 1 :
690 174 3 2 0 1065 165 3 2 0 1900 257 4 3 1
755 162 3 2 0 1160 172 4 2 1 2800 38 4 3 0

Note: P = selling price (thousands of dollars), § = size (thousands of squdre feet), Be = number of bedrooms, Ba = T
number of batlirooms, New = 1 if new and 0 if not. Data provided by Jane Myers, Coldwell-Banker Realty, [

Table 9.5 shows part of a SAS computer printouit for a regression analysis. The least '?
squares estimates of & and 8 are @ = —25.2 and b = 75.6, so the prediction equation ]
is ¥ = —25.2 4+ 75.6X. The predicted selling price increases by b = 75.6 thousand
dollars for an increase ih size of 1 thousand square feet; that is, it increases about $76
Icalgr square foot. Figure 9.15 also superimposes the prediction equation over the scatter 4

lagram. .

Table 9.5 reports that the standard error of the slope estimate is 6, = 3.865. This
is listed under “Standard Error.” This value estimates the variability in sample slope |
values that would result from repeatedly selecting random samples of 93 house sales
in Gainesville and calculating prediction equations. |
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Selling Price
300 '{

230 1

T +  Size of
| > 3 4 House

e oo o

Figure 9.15 Scatter Diagram and Prediction Equation for ¥ = Selling Price of House (in Thousands of
Dollars) and X = Size of House (in Thousands of Square Feet)

To test independence, Hy : 8 = 0, we form the ¢ test statistic,

b 7561
=2 P2 96
t= 5 T 3865

This statistic is listed in Table 9.5 under “T for HO: Parameter = 0.” Since the sample
size equals n = 93, the degrees of freedom for this statistic are df = n —2 = 91. This

¢ statistic has sampling distribution that is essentially identical to the standard normal

distribution. Clearly, this is an extremely large test statistic.

The P-value, listed in Table 9.5 under the heading PROB > |T|, is .0001 to four
decimal places. This refers to the two-sided alternative H, : B # 0; that s, it is the two-
tailed probability of a ¢ statistic at least as large in absolute value as the absolute value
of the observed ¢, |¢] = 19.6, if Hy were true. For the one-sided alternative H, : 8 > 0,
this level is halved, since P is then the right-hand tail probability of ¢ > 19.6.

Table 9.6 shows part of a SPSS printout for the same analysis. For SPSS, “B” de-
notes the estimated regression coefficient, and “(Constant)” is the label for the Y -inter-
cept. “SE B” denotes the standard error of b, “Sig T” denotes the two-sided P-value
for the ¢ test for a coefficient, and “Beta” denotes the estimated standardized regression
coefficient (this is the Pearson correlation for the regression model of this chapter; it is
not to be confused with the population slope, 8, which is unknown).

Both the SAS and SPSS printouts also contain a standard error and ¢ test for the Y-
intercept. This information is usually not of interest, since rarely is there any reason to
test the hypothesis that a Y -intercept equals 0. In fact, for this example, the Y -intercept
does not have any interpretation, since houses of size 0 do not exist.
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TABLE 9.5 Part of a SAS Computer Printout for Regression Analysis of Selling Price and Size

of House
Variable N Mean Std Dev
PRICE 93 99.533 44.184
SIZE 93 1.650 0.525
Sum of Mean Root
Source DF Squares Square MSE R-square
Medel 1 145097.464 145097.464 19.473 0.8079
Error 91 34508.402 379.213
Total 92 179605.867
Parameter Standard T for HO:
variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -25.1936 6.6884 -3.767 0.0003
SIZE 1 75.6068 3.8652 '19.561 0.0001

TABLE 9.6 Partof a SPSS Computer Printout for Regression Analysis of Selling Price and Size
ot House

DF Sum of Sgquares Mean Square
Regression 1 145097.464 145097 .464
Residual 91 34508.402 379.213
R Square .8079
Standard Error 19.4734
Variable B SE B Beta T Sig T
SIZE 75.6068 3.8652 .8988 19.561 .0000
(Constant) -25.1936 6.6884 -3.767 .0003

In summary, we can feel highly confident in concluding that size has a positive ef-
fect on price. On the average, selling price increases as size of house increases. This is
no big surprise. Indeed, we would be shocked if these variables were independent, and
a test of independence is irrelevant, for practical purposes, for these data. As is usually
the case, estimation is more informative than significance testing. 0

Confidence Interval for the Slope

A small P-value for Hy : 8 = 0 in a test of independence suggests that the regression
line has a nonzero slope. However, we should be more concerned with the size of the
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slope than in knowing merely that it is not 0. If the absolute value of the slope is small,
in relation to the units of measurement for X and Y, the association could be statistically
significant but practically unimportant. It is more informative, therefore, to construct
a confidence interval for the true slope 8.

A confidence interval for the slope has the formula

b+tto,

The ¢-score is the value from Table B, with df = n — 2, for the desired confidence
coefficient. As usual, use the ¢-score with half the error probability in each tail, for
instance t o5 for a 95% confidence interval. This intervatl is similar in form to the con-
fidence interval for a mean (Section 6.5). We take the estimate b and add and subtract
some ¢ multiple of the standard error of the estimate.

Example 9.11 Estimating the Slope for Housing Data

For the data on X = size of house and ¥ = selling price, # = 75.6 and 6, = 3.87. The
parameter S refers to the change in the mean selling price for a thousand square foot
increase in size (i.e., a one-unit increase in X). For a 95% confidence interval, we use
the g5 value for df = n — 2 = 91, which is 7 gps = 1.99. (It is permissible to use the
z-score if your software does not supply ¢ scores or confidence intervals.) The interval
is

bEtypsd, = 75.6+1.99(3.87)
75.6 7.7 or (67.9,83.3)

We can be 95% confident that 8 lies between 67.9 and 83.3. The mean selling price
increases by between $67,900 and $83,300 for a thousand-square-foot increase in house
size; equivalently, this is $67.90 to $83.30 per square foot. a

A confidence interval for 8 may not be meaningful if a one-unit increase in X is rel-
atively small or large, in practical terms. One should make inferences about the change
in E(Y) for an increase in X that is a more relevant portion of the actual range of X val-
ues. To obtain endpoints for the confidence interval for a constant multiple of the slope
(e.g., .18, the change in the mean of Y for an increase of .1 unit in X ), multiply the
endpoints of the interval for 8 by the same constant.

For Table 9.4, X = size of house has X = 1.65 and sy = .53. A change of 1.0
thousand square feet in size is very large. Let us estimate the effect of a 100-square-
foot increase in area. Now, 100 square feet equals .1 thousand square feet, so we refer
to the effect of a .1 unit change in X. The change in the mean of ¥ is .1 B.

A confidence interval for .18 has endpoints that are .1 times the endpoints of the
interval for 8. Thus, a 95% confidence interval for .18 has endpoints .1(67.9) = 6.79
and .1(83.3) = 8.33. We infer that the mean selling price increases by at least $6790
and at most $8330, for a 100-square-foot increase in house size.

To illustrate, we compare the selling prices of homes having X = 1.7 and X
1.6 thousand square feet of size. The estimated difference in selling price is .15

Il
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7.56 thousand dollars. Assuming that the linear regression model is appropriate, we
conclude that the mean is between $6790 and $8330 higher for houses of 1700 square
feet than for houses of 1600 square feet.

Reading the Computer Printout

Let’s take a closer look at the SAS computer printout in Table 9.5. It contains a consid-
erable amount of additional information we have not yet discussed. For instance, the
middle part of the printout reports a sum of squares table. From it, the sum of squared
errors (SSE) is 34,508.4. The estimated conditional standard deviation of ¥ for fixed
Xis

& = +/SSE/(n — 2) = /34,508.4/91 = 19.5

This is labeled “Root MSE,” for square root of the mean square error. It describes the
estimated variability in selling prices, for any fixed value for size of house. _

The sum of squares table also reports the total sum of squares, TSS = > (¥ —-Y)? =
179, 605.9. From this value and SSE,

2 TSS —SSE  179,605.9 — 34,508.4

TSS 179,605.9 = 808

This is the proportional reduction in error in using house size to predict selling price,
and is listed on the printout under the heading R-SQUARE. Since the slope of the pre-
diction equation is positive, the Pearson correlation is the positive square root of this
value, or .899. A strong positive association exists between these variables.

In Table 9.5, the total sum of squares TSS partitions into two parts, the sum of
squared errors, SSE = 34,508.4, and the difference between TSS and SSE, TSS —
SSE = 145,097.5. This difference is the numerator of the 2 measure and is called the
model sum of squares or sometimes the regression sum of squares or explained sum
of squares. 1t represents the amount of the total variation TSS in Y that is explained
by X in using the least squares line. The ratio of the model sum of squares to the total
sum of squares equals r2.

The table of sums of squares has an associated list of degrees of freedom values.
The degrees of freedom for the total sum of squares TSS = Y (¥ — ¥)?isn -1 =
92, since TSS refers to variability in the marginal distribution of ¥, which has sample
variance 53 = TSS/(n — 1). The degrees of freedom for SSE equals n —2 = 91, since
it refers to variability in the conditional distribution of ¥, which has variance estimate
&2 = SSE/(n — 2) for a model having two parameters. The model sum of squares has
df equal to the number of explanatory variables in the regression model, in this case
1. The sum of df for the model sum of squares and df for the sum of squared errors
equals df = n — 1 for the total sum of squares.

In the SPSS printout of Table 9.6, the “Regression” sum of squares is the model
sum of squares and the “Residual” sum of squares is SSE. The term labeled “Standard
Error” is the root mean square error, the square root of SSE divided by its df .
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Inference for the Pearson Correlation*

The Pearson correlation r equals O in the same situations in which the slope b of the
least squares line equals 0. Let p (tho) denote the value of the Pearson correlation for
the regression equation E(Y) = « + BX; that is, p is the population value of r. Then,
p = O precisely when 8 = 0. Thus, a test of Hy: p = O using the sample value r is
equivalent to the ¢ test of Ho : f = 0 using the sample value b.

The test statistic for testing Ho : p = 01is

r

I =
JA =)/ -2)

This provides the same value as the test statistic ¢ = b/65. Use either statistic to test
the null hypothesis of independence, since each has the same ¢ sampling distribution
with df = n — 2 and yields the same P-value. For example, the Pearson correlation of
.899 for the house price data in Example 9.10 leads to

r 599

=19.6
JA=r)/n-2) /{T—.808)/51

This is the same ¢-value as in Example 9.10 for testing Hy : 8 = 0.

For a set of variables, software for regression analyses reports their correlations in
a correlation matrix. This matrix is a square table listing the variables as the rows and
again as the columns. It reports the correlation for each pair, and usually also the two-
sided P-value for testing the significance of the correlation.

Table 9.7 illustrates the way sofiware reports the correlation matrix for four of the
variables from Table 9.1, deleting the observation for D.C. The correlation between
each pair of variables appears twice. For instance, the correlation of .3688 between vi-
olent crime rate and percentage in poverty occurs both in the row for “VIOLENT” and
column for “POVERTY” and in the row for “POVERTY” and column for “VIOLENT.”
The P-value for testing that that true correlation equals zero against the two-sided al-
ternative is .0084, listed underneath the correlation. The correlations on the diagonal
running from the upper left-hand corner to the lower right-hand corner of the table all
equal 1.000, indicating simply that the correlation between a variable and itself is 1.0.
For instance, if we know the value of Y, then we can predict the value of Y perfectly.

Although tests are simple, constructing a confidence interval is more complicated
for p than for the slope 8. The reason is that the sampling distribution of r is not sym-
metric except when p = 0. The lack of symmetry is caused by the restricted range
[—1, 1] for r values. If p is close to 1.0, for instance, then the sample r cannot fall much
above p, but it can fall well below p, and the sampling distribution of r is skewed to
the left. Problem 9.46 shows how to construct confidence intervals for correlations.
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TABLE 9.7 Computer Printout of Correlation Matrix for Variables from Table 9.1

Pearson Correlations / Prob > |R| under Ho: Rho=0

VIOLENT MURDER POVERTY SINGLE
VIOLENT 1.00000 0.78147 0.36875 0.64868
0.0 0.0001 0.0084 0.0001
MURDER 0.78147 1.00000 0.62862 0.72807
0.0001 0.0 0.0001 0.0001
POVERTY 0.36875 0.62862 1.00000 0.43031
0.0084 0.0001 0.0 0.0018
SINGLE 0.64868 0.72807 0.43031 1.00000
0.0001 0.0001 0.0018 0.0

9.6 Model Assumptions and Violations
We end this chapter by reconsidering the assumptions underlying linear regression anal-
ysis. In particular, we discuss the effects of violating these assumptions and the effects

of “influential” observations. Finally, we show an alternate way to express the model.

Comments About Assumptions

The linear regression model assumes that the relationship between X and the mean of
Y follows a straight line. The actual form is unknown, and it is unlikely to be exactly
linear. Nevertheless, a linear function often provides a decent approximation for the
actual form. Figure 9.16 illustrates a straight line falling close to an actual curvilinear
relationship. If the assumption of linearity is badly violated, as with a U-shaped rela-
tionship, results and conclusions using the linear model may be very misleading. For
this reason, you shouid always construct a scatter diagram to check this fundamental
assumption.

For instance, the inferences discussed in the previous section are appropriate for de-
tecting positive or negative linear associations. If the true relationship were U-shaped
(such as in Figure 9.5), the variables would be statistically dependent, since the mean
of ¥ would change according to the value of X. The ¢ test of independence might not
detect it, though, since the slope b of the least squares line would be close to 0. In
other words, a small P-value would probably not occur for Hy: 8 = 0 even though
an association exists. In summary, # = 0 need not correspond to independence if the
assumption of a linear regression model is violated.

The least squares line and the measures of association r and r? are valid descrip-
tive statistics no matter what the shape of the conditional distribution of Y -values for
each X-value. However, the statistical inferences in Section 9.5 make the additional




336 Chap. 9 Linear Regression and Correlation

\

True E (Y)

N\

Linear approximation o« + X
for true regression function E (¥}

Figure 9.16 A Linear Regression
Equation as an Approximation for
X Nonlinear Relationship

assumptions that the conditional distributions of ¥ are (1) normal, with (2) identical
standard deviation o for each X -value. These assumptions are also never exactly satis-
fied in practice. However, the closer reality falls to this ideal model, the more appropri-
ate are the confidence interval and test procedures introduced in that section. For large
samples, the normality assumption is not crucial, since an extended Central Limit The-
orem implies that sample slopes and correlations have approximately normal sampling
distributions.

Chapter 14 discusses ways of checking the assumptions of regression modeling and
making modifications to the analysis, if necessary.

Extrapolation Is Dangerous

It is dangerous to apply a prediction equation to values of X outside the range of ob-
served values of X. The relationship might not be linear outside that range. We might
get poor or even absurd predictions by extrapolating beyond the observed range.

To illustrate, the prediction equation Y = —.86 + .58X in Section 9.2 relating X

= poverty rate to ¥ = murder rate was based on sample poverty rates between 8.0 and
26.4. It is not valid to extrapolate much below or above this range. For instance, the

predicted murder rate for a poverty rate of X = 0% is Y = — 86. This is an impossible
value for murder rate, which cannot be negative.

Influential Observations

The least squares method has a long history and is the standard way to fit prediction
equations to data. A disadvantage of least squares, however, is that individual obser-
vations can unduly influence the fit of the model. A single observation can have a large
effect on the fit if its X value is unusually large or unusually small and if it falls quite
far from the trend that the rest of the data follow.
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Figure 9,17 illustrates this. The figure plots observations for several African and
Asian nations, taken from Table 9.13 in Problem 9.17, on Y = crude birth rate (number
of births per 1000 population size) and X = number of televisions per 100 people. We
added to the figure an observation on these variables for the United States, which is
the outlier that is much lower than the other countries in birth rate but much higher on

number of televisions. Figure 9.17 shows the prediction equations both without and

with the U.S. observation. The prediction equation changes from Y =29.8 —.024X
to ¥ = 31.2 — .195X. Adding only a single point to the data set causes the prediction
line to tilt dramatically downward.

35
Y N Prediction equation
without United States
30
25 1
Prediction equation
with United States
20
Figure 9.17 Prediction
15 i Equations for ¥ == Birth Rate and
X = Television Ownership, with
' ' T T X and without Observation for
0 20 40 60 80 United States

Section 9.2 showed a not-so-extreme version of this. The slope of the prediction
equation more than doubled when we included the observation for D.C. in the data set.

When a scatter diagram reveals a severe outlier, the reasons for it should be inves-
tigated. An observation may have been incorrectly recorded. If the observation is cor-
rect, perhaps that observation is fundamentally different from the others in some way,
such as the U.S. observation in Figure 9.17. It may suggest an additional predictor for
the model. It is often worthwhile to refit the model without one or two extreme outliers
to see if those observations have a large effect on the parameter estimates, as we did in
Example 9.4 with the D.C. observation for the murder rate data.

Observations that have a large influence on the model parameter estimates can also
have a large impact on the correlation. For instance, for the data in Figure 9.17, the
correlation is —.935 when the outlier is included and —.051 when it is deleted from

the data set. One point can make quite a difference, especially when the sample size is
small.
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Factors Influencing the Correlation

Besides being influenced by outliers, the sample correlation depends on the range of
X -values sampled. When a sample has a much narrower range of variation in X than
the population, for example, the sample correlation tends to underestimate drastically
(in absolute value) the population correlation.

Figure 9.18 shows a scatter diagram of 500 points that is very regular and has a
correlation of r = .705. Suppose, instead, we had only sampled the middle half of
the points, roughly between X values of 43 and 57. Then the correlation equals only
r = .330, considerably lower. For another example, consider the relation between
housing price and size of house, portrayed in Figure 9.15. The correlation equals .899.

If we sampled only those sales in which house size is between 1.3 and 2.0 thousand

feet, which include 48 of the 93 observations, the correlation decreases to .564.

The correlation is most appropriate as a sammary measure of association when the
sample (X, Y)-values are a random sample of the population. This way, there is a rep-
resentative sample of the X variation as well as the Y variation.

90 - I
Y . . * .
80 .o .
oedaby
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Example 9.12 Does the SAT Predict College GPA?

In studying the association between score on a college entrance exam (such as the SAT)
and later performance in college (such as GPA at end of second year), the strength of
the correlation depends on the variability in SAT scores in the sample. If we study the
association only for students at Harvard University, the correlation will probably not
be strong, because the sample SAT scores will be concentrated very narrowly at the
upper end of the scale. By contrast, if we randomly sampled from the population of
a]l high school students who take the SAT and placed those students in the Harvard
environment, students with poor SAT scores would tend to have low GPAs at Harvard,
and we would then observe a much stronger correlation. O
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Other aspects of regression, such as fitting a prediction equation to the data and
making inferences about the slope, remain valid when we randomly sample Y within a
restricted range of X-values. We simply limit our predictions to that range. The slope
of the prediction equation is not affected by a restriction in the range of X. For Fig-
ure 9,18, for instance, the sample slope equals .97 for the full data and .96 for the re-
stricted middle set. The correlation makes most sense, however, when both X and ¥
are random, rather than only Y.

Regression Model with Error Terms*

We now show an alternative way of writing the linear regression equation. Recall that
at a fixed value of X, the values of ¥ fluctuate around their mean, E(Y) = o + 8X.
Any specific observation on ¥ may fall above that mean (i.e., above the regression line)
or below that mean (below the regression line). The standard deviation component ¢
of the model summarizes the typical sizes of the deviations from the mean.

An alternative formulation for the model expresses each observation on Y, rather
than the mean E(Y) of the values, in terms of X. One does this by including a term for

the deviation of the observation from the mean. This approach models an observation
onY as

Y=a+B8X+¢

The term denoted by ¢ (the Greek letter, epsilon) represents the deviation of the obser-
vation from the mean, a + S X. Each observation has its own value for ¢.

If ¢ is positive, then & + 8X + ¢ is larger than o + X, and the observation falls
above the mean. See Figure 9.19. If ¢ is negative, the observation falls below the mean.
When & = 0, the observation falls exactly at the mean. The mean of the s-values is 0.

Y

E(Y)=o+8X

Y=o+ BX+e¢
(g <0)

Figure 9.19 Positive and

Negative £-Values Correspond to

Observations Above and Below
X the Conditional Mean
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The ¢ term in the equation ¥ = & + X - & occurs because observations with the
A same X -values do not all have the same Y -values; that is, the variables are not perfectly
' \ correlated. The model Y = a+ B X +¢ is a probabilistic one. For each X, variability in
i the Y-values corresponds to variability in €. The & term is called the error term, since
_:‘ | it represents the error that results from using the mean value (o + 8X) of Y at a certain
1k value of X for the prediction of the individual observationon Y.
| For a particular sample of n observations, we do not know the n values for &, just
like we do not know the parameter values and the true mean « + BX. For the sample
data and their prediction equation, let e be such that

Y=a+bX +e

Thatis, Y = ¥ + e, sothate = ¥ — Y. Then e is simply the residual, the difference
between the observed and predicted values of Y. Since ¥ = a + BX + ¢, the residual
e estimates &. We can interpret ¢ as a population residual. Thus, ¢ is the difference
between the observation Y and the mean o + X of all possible observations on Y at
that value of X. Graphically, ¢ is the vertical distance between the observed point and
the true regression line.

One can write the regression model eitheras E(Y) = o+pgXorasY = a+pX+¢.
Although we use the first equation, we introduced this alternative one since some books
and articles express the regression model in this way.

Models and Reality

We emphasize again that the regression model approximates the true relationship. No
sensible researcher expects a relationship to be exactly linear, with exactly normal con-
ditional distributions at each X and with exactly the same standard deviation of Y-
values at each X-value. However, by definition, models merely approximate reality.
If the model seems too simple to be adequate, the scatter diagram or other diag-
nostics may suggest improvement by using more general models introduced in the re-
mainder of this text. Such models can be fitted, rechecked, and perhaps modified fur-
ther. Model building is an iterative process. Its goals are to find a realistic model that is
adequate for describing the relationship and making predictions but that is still simple
enough to be easily interpreted. Chapters 1115 present ways of extending the model
so that it applies to situations in which the assumptions of this chapter are too simplistic.

9.7 Chapter Summary

Chapters 7-9 have dealt with the detection and description of association between two
variables. Chapter 7 showed how to compare means or proportions for two groups. The
explanatory variable is a binary variable defining the two groups; we compare means
when the response variable is quantitative and proportions when the response variable

is qualitative. When the variables are statistically independent, the means or propor-
tions are identical for the two groups.

QAR AL e e
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Chapter 8 dealt with association between two qualitative variables. Measures of
association such as the difference of proportions, the odds ratio, and gamma describe
the strength of association. The chi-squared statistic for nominal data or a z statistic
based on sample gamma for ordinal data tests the hypothesis of independence.

This chapter dealt with association between quantitative variables. A new element
studied here was a regression model to describe the form of the relationship between
the explanatory variable X and the mean E(Y) of the response variable. The major
aspects of the analysis are as follows:

o The linear regression equation E(Y) = o + $X describes the form of the rela- !
tionship. This regression model! is appropriate when a straight line approximates '
the relationship between X and Y.

o A scatter diagram plots the data and checks whether the relationship is approx-
imately linear. If it is, the method of least squares provides estimates of the Y-
intercept « and the slope B for a linear prediction equation ¥ = a +- bX.

e The Pearson correlation r and its square, the coefficient of determination 2, o
describe the strength of the linear association between two quantitative variables. H
The Pearson correlation is a standardized slope, having the same sign but falling -
between —1 and +1. Its square has a proportional reduction in error (PRE) inter- .
pretation; it describes the reduction in variability about the prediction equation
compared to the variability about the sample mean of Y.

o For inference about the existence of a relationship between the variables, a ¢ test
using the slope or correlation tests the null hypothesis of independence, namely,
that the population slope and correlation equal 0. More informatively, one can
construct confidence intervals for the unknown parameters.

Table 9.8 summarizes the methods studied in the past three chapters.

TABLE 9.8 Summary of Tests of Independence and Measures of Asseciation

Measurement Levels Of Variables
Nominal Ordinal Interval
Null hypothesis  Hp: Independence Hy: Independence  Hy: Independence (8 = 0)
et 2 __ (fo— e)2 — y _ b _ s e
Test statistic X _Zﬁ_f:f__ Z—al,; t—a—b—ﬁ’df—"—z

Measure of T, — 7T p=5L r==»b (S—’i)

Sy
' association

. 2 _ Ey—E;, __ TS5—SSE
Odds ratio rt=Sp= = g

Chapter 11 introduces the multiple regression model, a generalization that permits
several explanatory variables in the model. Chapter 12 shows how to include guali-
tative predictors in a regression model, and Chapter 13 includes both qualitative and
quantitative predictors. Chapter 14 introduces models for more complex relationships,
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. such as nonlinear ones. Finally, Chapter 15 presents regression models for qualitative
i response variables. Before discussing these multivariate models, however, we intro-
| duce in the next chapter some new concepts that help us to understand and interpret
| multivariate relationships.

W | PROBLEMS
Practicing the Basics

|

E 1. For the following variables in a regression analysis, which variable more naturally plays
g | ] the role of X (explanatory variable) and which plays the role of ¥ (response variable)?
| . a) College grade point average (GPA) and high school GPA.

20 b) Number of children and mother’s education level.

b1 ¢) Annual income and number of years of education.

d) Annual income and assessed value of home.

2. Sketch plots of the following lines, for values of X between 0 and 10:

i a)Y=7+5X

| b)Y =7+X
1B OY=7-X
BN dy=7-5Xx
R e)Y =7

- EB 3. For the data on the 50 states in Table 9.1 on ¥ = violent crime rate and X = poverty rate,
& | the prediction equation is ¥ = 209.9 + 25.5X.

"&H a) Sketch a plot of the prediction equation for X between 0 and 100.

2 b) Interpret the Y -intercept and the slope.

¢) Find the predicted violent crime rate for Massachusetts, which has X = 10.7 and
Y = 805.

d) Find the residual for the Massachusetts prediction. Interpret.

e) Two states differ by 10.0 in their poverty rates. Find the difference in their predicted
violent crime rates. ,

f) The state poverty rates range from 8.0 (for Hawaii) to 24.7 (for Mississippi). Over this
range, find the range of predicted values for violent crime rate.

g) What is the sign of the Pearson correlation between these variables? Why?

4. A college admissions officer claims that the prediction equation Y =.5+7.0X approxi-
mates the relationship between ¥ = college GPA and X = high school GPA (both meas-
ured on a four-point scale) for students at that college.

a) Is this equation realistic? Why or why not?

b) Suppose that the prediction equation is actually ¥ = .5 + .7X. Interpret the slope.

¢) Using the prediction equation in (b), find the predicted GPA for a student having a high
school GPA of (i) 3.0, (ii} 4.0.

d) Suppose the prediction equation is ¥ = X. Identify the Y-intercept and slope, and
interpret their values.

5. Arecent study of mail survey response rate patterns of the elderly found a prediction equa-
tion relating X = age and Y = percentage of subjects responding of ¥ =902— 6X, for

ages between about 60 and 90 (D. Kaldenberg et al., Public Opinion Quarterly, Vol. 58,
1994, p. 68).
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a) Interpret the slope.

b) Find the predicted response rate for a (i) 60 year old, (ii) 90 year old.

¢) Find the difference in predicted response rates for two age groups that are ten years
apart.

. Refer to Problem 9.24. For those counties, Table 9.9 shows part of the printout for the
regression analysis relating ¥ = median income (thousand of dollars) to X = percent of
residents with at least a high school education.

a) Report the prediction equation, and interpret the slope.

b) Is the Y-intercept meaningful? Explain,

¢) Find the predicted median income for a county with 70% of the residents having at
least a high school education.

d) County A has 10% more of its residents than county B with at least a high school ed-
ucation. Find their difference in predicted median incomes.

e) Find the Pearson correlation. Interpret using (i) the sign, (ii} the magnitude, (iii) the
standardized slope.

f) Find the coefficient of determination. Explain its PRE interpretation.

TABLE 9.9
Variable Mean Std Dev Parameter
———————————————————————————— Variable Estimate
INCOME 24.51 4.69
EDUCATIO 69.49 8.86 ' INTERCEP -4.63

---------------------------- EDUCATIO 0.42

- A high school student analyzes whether a relationship exists between X = number of
books read for pleasure in the previous year and ¥ = daily average number of hours
spent watching television. For her three best friends, the observations are as shown in
Table 9.10.

a) Construct a scatter diagram. From inspection of the diagram, state the prediction equa-
tion, and interpret. (Note: You can do this without using the least squares formulas.)

b) Report the sample correlation between X and Y, and interpret.

TABLE 9.10
x Yy
0 5
5 3
10 1

. For the WWW data set described in Problem 1.7, the sample correlation between ¥ =
political ideology (scored 1 to 7) and X = mumber of times a week reading a newspaper
is r = —.066.

a) Interpret the sign of the correlation.

b) Interpret the square of the correlation. Would you conclude that the sample association
is strong, or weak?

¢€) When Y is predicted using X = religiosity (how often attend religious services, scored
0, 1, 2, 3), the sample correlation is r = .580. Which of these two explanatory variables
seems to have a stronger linear relationship with ¥'? Explain.
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9. The prediction equation for a sample of 100 people relating X = years of education and

10.

11.

Y = annual income (in dollars) is ¥ = —6000 + 3000X, and the Pearson correlation
equals .50.

a) Suppose instead that ¥ refers to annual income, in thousands of dollars. State the pre-
diction equation and the correlation.

b) Suppose that Y is treated as the explanatory variable and X is treated as the response
variable. Will the correlation coefficient or the slope change in value? Explain.

For the house sales data in Table 9.4, Table 9.11 shows a computer printout for the regres-
sion analysis relating selling price (thousands of dollars) to number of bedrooms.

TABLE 9.11
Variable N Mean Std Dev
PRICE 93 99,5333 44,1841
BEDROOMS 93 3.1828 0.6070
Sum of Mean

Source DF Squares Square F Value Prob>F
Model 1 62577.52 62577.52 48.66 0.0001
Error 91 117028.35 1286.03
C Total 92 179605.87
Root MSE 35.86120 R-square 0.3484

Parameter Standard T for HO:
vVariable DF Estimate Error Parameter=0 Prob > |T]|
INTERCEP 1 -37.229 19.955 -1.866 0.0653
BEDROOMS 1 42.969 6.160 6.976 0.0001

a) Report the prediction equation, and interpret the slope. Is the relationship positive, or
negative?

b) Find the predicted selling price for a home with (i} two, (ii) three, (iii) four bedrooms.
¢) The first observation in the data set has three bedrooms and a selling price of 48.5 thou-
sand dollars. Find the residual, and interpret.

d) Using the sample slope and the standard deviations, find the Pearson correlation. In-
terpret its value.

e) Report the coefficient of determination, and interpret its value.

f) Report the standard error of the sample slope. Interpret.

) Find the test statistic and P-value for testing Hy: 8 = 0 against H,: 8 # 0, and inter-
pret.

h) Construct a 95% confidence interval for 8, and interpret.

i) Use the result of the previous part to form a 95% confidence interval for the difference
in the mean housing prices for homes with X = 4 bedrooms and with X = 2 bedrooms.
Interpret.

J) Interpret the value labeled “Root MSE.”

Refer to Table 9.1. Table 9.12 shows an SPSS printout for the relationship for all 51 ob-
servations between Y = murder rate and X = percentage white.

a) Report the prediction equation. Interpret the Y -intercept and slope.

b) Report the coefficient of determination, and interpret.




;ﬂ

Chap. 9 Problems 345

TABLE 9.12
R Square .4988 ‘
Standard Error 7.6646
Variable B SE B Beta T Sig T
WHITE -0.571 0.0817 -0.706 -6.983 0.0001
Constant 56.766 6.9623 8.153 0.0001

¢) Find the correlation, and interpret.

d) Report and interpret the estimated conditional standard deviation of murder rate.

€) When the D.C. observation is deleted, the estimated stope changes to —.216, and r?
changes to .359, Explain how a single observation can have such a large effect.

12. Refer to Table 9.1. For ali 51 observations, use software to analyze the relationship be-
tween murder rate and violent crime rate, treating murder rate as the response variable.
a) Construct a scatter diagram. Does there scem to be a positive, or a negative, relation-
ship?

b) Find the prediction equation, and interpret the coefficients.

¢) Find the predicted murder rate and the residuat for D.C. Interpret.

d) Find the predicted murder rate at the mean of 612.8 for violent crime rate.

e) Using the slope and the standard deviations 441.1 for violent crime rate and 10.7 for
murder rate, find the correlation. Interpret.

f) Report TSS and SSE from your printout, and use them to find the coefficient of deter-
mination and the correlation.

g) Now, treating violent crime rate as the response variable, find the prediction equation.
Interpret the coefficients.

h) Find the predicted violent crime rate at the mean of 8.73 for murder rate. (Note from
this and from (d) that the predicted value at the mean of the explanatory variable is simply
the mean of the response variable.)

i) Using the standard deviations and the slope of this second prediction equation, find
the correlation. Compare to (e). How would you characterize this association, strong or
weak?

J) Based on box plots for the individual variables or the scatter diagram, would you regard
D.C. as an outlier? Refit the model in (b) without it, and note the effect on the slope and
correlation. o

13. Refer to Problem 9.24. For those data, use software to analyze ¥ = crime rate and X =

percentage living in an urban environment.

a) Construct a stem and leaf plot and a box plot for Y. Interpret.

b) Show that ¥ = 24.5 + .56X. Interpret the Y-intercept and slope.

¢) Find the predicted crime rate and the residual for Alachua County. Interpret.

d) Using the slope, find the difference in predicted crime rates between counties that are
100% urban and counties that are 0% urban. Interpret.

€) Report and interpret the Pearson correlation. Show the connection between it and the
slope and the standard deviations of 28.3 for crime rate and 34.0 for percentage urban.
f) Find TSS and SSE on your printout, and use them to verify the coefficient of determi-
nation. Interpret.

£) Does it make sense to conduct statistical inference, such as a test of independence, for
these data? Explain.




346

14.

15.

16.

17.

Chap. 9 Linear Regression and Correlation

Using software, plot the relationship between percentage single-parent families and per-
centage white, for the data in Table 9.1.

a) Based on your plot, identify the two observations that seem quite different from the
others.

b) Find the prediction equation and the correlation (i) for the entire data set, (ii) deleting
the first of the two outlying observations, (iii) deleting the second of the two outlying ob-
servations, (iv) deleting both outlying observations. Discuss the influence of these points.

Refer to the housing data in Table 9.4. Use software to fit the model with number of bath-
rooms as the predictor for price.

a) Construct a scatter diagram. Note the effect of using such a highly discrete predictor,
having only three values.

b) Find the prediction equation. Interpret the slope.

¢) Find the predicted selling price for homes with one, two, and three bathrooms.

d) Find the Pearson correlation and interpret its value.

€) Find the coefficient of determination and interpret its value.

f) Test the null hypothesis that mean selling price is independent of number of bathrooms,
and report the P-value. Why is this inference not especially informative for these vari-
ables?

g) Find a 95% confidence interval for the difference between the mean selling price for
homes with two bathrooms and homes with one bathroom. Interpret.

h) Find a 95% confidence interval for the difference between the mean selling price for
homes with three bathrooms and homes with one bathroom. Interpret.

A study was conducted using 49 Catholic female undergraduates at Texas A & M Univer-
sity. The variables measured refer to the parents of these students. The response variable
is the number of children that the parents have. One of the explanatory variables is the
mother’s educational level, measured as the number of years of formal education. For
these data, X = 9.88,sy = 3.77.Y = 3.35,5y = 2.19, the prediction equation is
Y =5.40 — 207X , the standard error of the slope estimate is .079, and SSE = 201.95.
a) Interpret the ¥ -intercept and siope.

b) Find the predicted numbers of children for women with (i) 8, (ii) 12, (iii) 16 years of
education.

c) Find the Pearson correlation and interpret its value.

d) Test the null hypothesis that mean number of children is independent of mother’s ed-
ucational level, and report and interpret the P-value.

e) Find a 95% confidence interval for the slope of the regression equation. Interpret.

f) Construct and interpret a 95% confidence interval for the difference between the mean
number of children for two sets of mothers who are eight years apart in educational level.
g) Sketch a potential scatter diagram for these variables such that the analyses you con-
ducted above would be inappropriate.

Table 9.13 lists recent values for several nations on the crude birth rate (number of births
per 1000 population size), women’s economic activity (female labor force as percentage
of male), percentage women using contraception, female life expectancy, female adult
literacy rate, a human development index (HDI, which has components referring to life
expectancy at birth, educational attainment, and income per capita), gross national prod-
uct (GNP, per capita, in thousands of dollars}, daily newspaper circulation per 100 people,
and number of televisions per 100 people. This exercise uses birth rate as the response
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TABLE 9.13
Birth Econ. Contra- Liter. Life News

Nation Rate Activ. ception Rate Expec. HDI GNP Circul TV f
Algeria 29.0 11 47 73 68 44 1.6 5 7
Argentina 19.5 38 - 88 76 96 4.0 12 22
Australia 14.1 61 76 93 81 929  16.6 25 48 -
Brazil 21.2 38 66 80 69 81 2.6 5 21 :
Canada 137 63 — 95 81 99 208 23 64
China 17.8 81 83 59 70 70 1.3 5 3 ;
Cuba 14.5 50 70 77 77 94 1.6 17 16 1
Denmark 12.4 77 78 92 78 99 242 35 54 :
Egypt 28.7 12 46 61 63 36 S 6 12
France 13.0 64 81 93 31 99 241 21 41 k|
Germany 11.0 - 75 92 79 99 198 59 56 1
India 278 34 43 44 60 35 3 3 4
Iraq 43.6 29 14 62 67 41 7 4 7
Israel 204 49 — 91 78 95 136 26 27 b
Japan 10.7 64 64 94 82 99 273 59 61
Malaysia 28.0 55 48 75 73 82 2.5 14 15 i
Mexico 26.6 37 53 84 74 36 3.1 i3 15 i
Nigeria 433 51 6 4] 52 42 2 — - ‘.
Pakistan 418 16 12 48 63 63 4 2 2 .
Philippines 304 44 40 68 68 94 7 5 4 ; ’
Russia 12.6 70 - 85 74 99 8.6 — — o
South Africa 334 54 50 - 66 70 26 4 10 i
Spain 11.2 31 - 98 80 93 134 8 40 i
United Kingdom  13.2 60 81 2 79 99 174 39 43
United States 15.2 65 74 94 79 99 226 25 81
Vietnam 26.3 82 53 89 67 54 — - -

Sources: Statistical Abstract of the United States, 1995 (Washington: D.C.: U.8. Government Printing Office),

and Human Development Report, 1995 (Oxford: Oxford University Press, 1995).

variable and women’s economic activity as the explanatory variable. Table 9.14 shows
part of a SPSS printout for a regression analysis.
a) Report the prediction equation, and interpret the Y -intercept and slope.
b) Report r and r2, and interpret their values.
¢) Find the predicted value and residual for Nigeria, and interpret.

18. Refer to the previous exercise. Now use GNP as the explanatory variable for predicting
birth rate,
a) Construct a stem and leaf plot or box plot for birth rate, and describe its distribution.
b) Construct a scatter diagram, and indicate whether a linear model seems appropriate.
¢) Fit the model, and interpret the parameter estimates.
d) Can you compare the slopes of the prediction equations with the two predictors to de-
termine which has the stronger effect? Explain.
€) Which variable, GNP or women’s economic activity, seems to have the stronger asso-
ciation with birth rate?
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| | TABLE 9.14
| R Square .2973
i | | Standard Error 8.821
gl
1] variable B SE B  Beta T sig T
WOMEN-EC -0.277 0.089 -0.545 -3.119 0.0048
(Constant) 36.324 4.700 7.729 ¢.0001

19. Refer to the previous two exercises. Using software, obtain the correlation matrix for
these data. Which pairs of variables are highly correlated? Describe the nature of those
correlations, and explain how your software handled the missing values. (For a partic-
ular analysis, most software deletes observations for which data are missing on at least
one variable used in the analysis. Better strategies exist; see, for instance, R. Little and
D. Rubin, Sociological Methods and Research, Vol. 18, 1989, pp. 292-326.)

20. For a random sample of U.S. counties, data are obtained on X == percentage of the popu-
lation aged over 50 and ¥ = per student expenditure on education. Table 9.15 is part of
the computer printout for the analysis.

a) What was the sample size for this study?
b) Fill in the blanks in Table 9.15.
TABLE 9.15
Sum of Mean Root
Source DF Squares Square MSE R-square
Model 1 . e —emee —_————
Error - 400000  -——————
Total 49 500000
Parameter Standard T for HO:
Variable Estimate Error Parameter=0 Prcb > |T|
INTERCEP 1300.0 6.334 205.2 .0000
AGE -5.0 1.443 - -
21. For Table 9.1, use software to analyze the data on violent crime rate and percent single
parent families.
a) Construct a scatter diagram. What does it show?
b) One point is quite far removed from the others, having a much higher value on both
variables than the rest of the sample, but it fits in well with the linear trend exhibited by the
rest of the points. Show that the correlation changes from .839 to .649 when you delete
this observation. Why does it drop so dramatically?
Concepts and Applications
22. Refer to the WWW data set (Problem 1.7). Using software, conduct regression analyses

relating (i) ¥ = political ideology and X = religiosity, (ii) ¥ = high school GPA and
X = hours of TV watching. Prepare a report, _
a) Using graphical ways of portraying the individual variables and their relationship.
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b) Interpreting descriptive statistics for summarizing the individual variables and their
relationship.

c) Summarizing and interpreting results of inferential analyses.

d) Checking effects of possibly influential outliers.

23. Refer to the data file you created in Problem 1.7. For variables chosen by your instruc-
tor, conduct a regression and correlation analysis. Report both descriptive and inferential
statistical analyses, interpreting and summarizing your findings. .

24. Table 9.16 shows recent data from all 67 Florida counties on crime rate (number of crimes ‘ ‘
per 1000 residents), median income (in thousands of dollars), percentage of residents with
at least a high school education (of those aged at least 25), and the percentage of the
county’s residents living in an urban environment. Using crime rate as the response vari-

TABLE 9.16
Crime  Median  High  Percent Crime  Median  High  Percent
County Rate Income School Urban  County Rate Income  School  Urban
ALACHUA 104 22.1 82.7 73.2 LAFAYETTE 0 20.7 58.2 0.0
BAKER 20 258 64.1 21.5 LAKE 42 234 70.6 43.2
BAY 64 247 74.7 85.0 LEE 59 284 76.9 86.1
BRADFORD 50 24.6 65.0 232 LEON 107 213 84.9 82.5
BREVARD 64 30.5 823 91.9 LEVY 45 18.8 628 6.0
BROWARD 94 30.6 76.8 98.9 LIBERTY 8 223 56.7 0.0
CALHOUN 8 18.6 55.9 0.0 MADISON 26 18.2 56.5 203
CHARLOTTE 35 25.7 757 80.2 MANATFE 79 26.0 75.6 88.7
CITRUS 27 21.3 68.6 31.0 MARION 64 225 69.6 39.6
CLAY 41 34.9 81.2 65.8 MARTIN 53 31.8 79.7 832
COLLIER 55 340 790 71.6 MONROE 89 294 797 732
COLUMBIA 69 220 69.0 311 NASSAU 42 30.2 71.2 44.9
DADE 128 26.9 65.0 98.8 OKALOOSA 37 279 83.8 84.0
; DESOTO 69 21.0 54.5 44.6 OKEECH. 51 214 5%.1 30.1 |
F DIXIE 49 154 57.7 0.0 ORANGE 93 30.3 78.8 93.1 '
DUVAL 97 28.5 76.9 98.8 OSCEOQLA 18 27.3 137 66.4 :
ESCAMBIA 70 252 762 85.9 PAILM B. 90 325 78.8 94.7
FLAGLER 34 28.6 78.7 63.1 PASCO 42 21.5 66.9 67.4
FRANKLIN 37 17.2 59.5 30.2 PINELLAS 70 263 78.1 99.6
GADSDEN 52 20.0 55.9 28.8 POLK 84 25.2 68.0 70.3
3 GILCHRIST 15 20.6 63.0 0.0 PUTNAM 83 20.2 64.3 15.7 -
GLADES 62 20.7 574 0.0 SANTAR. 43 276 79.9 57.2
GULF 19 21.9 66.4 352 SARASOTA 58 29.9 71.7 92.1
HAMILTON 6 18.7 58.4 0.0 SEMINOLE 56 35.6 78.5 44.4
3 HARDEE 57 22.1 54.8 16.7 ST JOHNS 54 29.9 81.3 932
E HENDRY 47 249 56.6 44.7 ST LUCIE 58 217 84.6 92.8
& HERNANDOC 44 27 70.5 61.3 SUMTER 37 19.6 64.3 19.3
: HIGHLANDS 56 21.1 68.2 248 SUWANEE 37 19.8 63.8 23.6
HILLSBOR. 110 28.5 75.6 89.2 TAYLOR 76 214 62,1 41.8 :
5 HOLMES 5 17.2 57.1 16.8 UNION 6 22.8 67.7 0.0 !
i INDIAN R. 58 29.0 76.5 83.0 VOLUSIA 62 24.8 75.4 83.9 '
JACKSON 32 19.5 61.6 2i.7 WAKULLA 29 25.0 71.6 0.0
& JEFFERSON 36 21.8 64.1 223 WALTON 18 219 66.5 20.9
WASHINGTON 21 18.3 60.9 22.9

Source: Dr. Larry Winner, University of Florida.
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able and percent urban as the predictor, analyze these data. In your report, provide inter-
pretations of all the analyses.

Refer to the previous exercise. Using income as the response variable and percentage of
high school graduates as the explanatory variable, analyze these data. Prepare a report,
and explain carefuily the interpretations of all your analyses.

Refer to Table 9.1. Analyze the relationship between violent crime rate and percentage
having at least a high school education. Write a report showing your analyses, providing
interpretations, and summarizing your findings.

Refer to Table 9.1. Analyze the relationship between violent crime rate and percentage of
single-parent families. Write a report showing your analyses, providing interpretations,
and summarizing your findings.

Repeat the previous exercise, using murder rate as the response variable.

Refer to Table 9.13. Analyze the relationship between newspaper circulation and gross
national product. Tell why you conducted each part of the analysis and explain how to
interpret the results.

Recently the General Social Survey has asked subjects to rate various groups using the
“feeling thermometer.” Ratings between 50 and 100 mean you feel favorable and warm
toward the group, whereas ratings between 0 and 50 mean that you don’t feel favorable.
It also asks subjects to rate themselves on political ideology, using scores 1 = extremely
liberal, 2 = liberal, 3 = slightly liberal, 4 = moderate, 5 = slightly conservative, 6 = conser-
vative, 7 = extremely conservative, and to describe their religious attendance, using the
categories (never, less than once a year, once or twice a year, several times a yeat, about
once a month, 2-3 times a month, nearly every week, every week, several times a week).
Table 9.17 shows data for ten of the subjects in a recent survey, where the feelings ther-
mometer refers to feelings about liberals and using religion scores that are the category
numbers.

a) Analyze Table 9.17. Tell why you conducted each analysis, and explain how to inter-
pret the results.

d) Suppose the feelings response for the first subject had incorrectly been recorded as 90
instead of 10. How would this have affected results of your analyses?

TABLE 9.17
Feelings Ideology Religion Feelings Ideology Religion
10 7 9 60 4 8
70 3 5 40 5 6
50 4 7 80 3 7
30 6 4 50 4 6
90 4 3 40 6 8

In an article in USA Today (December 28, 1984), sociologists N. Glenn and B. A. Shel-
ton are quoted as showing a strong link between residential mobility and divorce rates. In
Table 9.18, divorce rate is the annual number of divorces and annulments per 1000 pop-
ulation, and mobility rate is the percentage of people living in a different house from five
years ago. Analyze these data.

Describe a situation in which it is inappropriate to use the Pearson correlation to measure
the association between two quantitative variables.
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TABLE 9.18
Mobility  Divorce
Region Rate Rate
New England 41 4.0
Middle Atlantic 37 34
East North Central 44 5.1
West North Central 46 4.6
South Atlantic 47 5.6
East South Central 44 6.0
West South Central 50 6.5
Mountain ‘ 57 1.6
Pacific 56 59

Annual income, in dollars, is the response variable in a regression analysis. For a British
version of the report on the analysis, all responses are converted to British pounds sterling
(1 pound equals about 1.5 dollars, as of 1597).

a) How, if at all, does the slope of the prediction equation change?

b) How, if at all, does the correlation change?

The variables ¥ = annual income (thousands of dollars), X; = number of years of edu-
cation, and X, == number of years experience in job are measured for all the employees
having city-funded jobs, in Knoxville, Tennessee. The following prediction equations and
correlations apply.

i. 7 =104+10X,, r=.30.

ii. ¥ =14+ .4X;,  r=.60.
The correlation is —.40 between X, and X,. Which of the following statements are true?
a) The strongest sample association is between Y and X».
b) The weakest sample association is between X; and X;.
¢) The prediction equation using X» to predict X; has negative slope.
d) A standard deviation increase in education corresponds to a predicted increase of .3
standard deviations in income.
e) There is a 30% reduction in error in using education, instead of Y, to predict income.
f) Each additional year on the job corresponds to a $400 increase in predicted income.
g) When X is the predictor of ¥, the sum of squared residuals (SSE) is larger than when
X5 is the predictor of Y.
h) The predicted mean income for employees having 20 years of experience is $4000
higher than the predicted mean income for employees having 10 years of experience.
i) If & = 8 for the model using X to predict ¥, then it is not unusual to observe an income
of $70,000 for an employee who has 10 years of education.
§) It is possible that sy = 12.0 and sx, = 3.6.
K) It is possible that ¥ = 20 and X; = 13.

Select the best response(s) in Problems 7.35-7.37.
One can interpret r = .3 as follows:
a) A 30% reduction in error occurs in using X to predict .

b) A 9% reduction in error occurs in using X to predict ¥ compared to nsing ¥ to predict
Y.
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¢) 9% of the time f=v.

d) Y changes .3 unit for every one-unit increase in X.

€) When X predicts Y, the average residual is .3.

f) X changes .3 standard deviations when Y changes one standard deviation.

The correlation is inappropriate as a measure of association between two quantitative vari-
ables: :

a) When different people measure the variables using different units.

b) When the relationship is highly nonlinear.

¢) When the data points fall exactly on a straight line.

d) When the slope of the prediction equation is 0 using nearly all the data, but a couple
of outliers are extremely high on ¥ at the high end of the X scale.

€) When Y tends to decrease as X increases.

f) When we have data for the entire population rather than a sample.

g) When the sample has a much narrower range of X-values than does the population.
The slope of the least squares prediction equation and the Pearson correlation coefficient
are similar in the sense that

a) They do not depend on the units of measurement.

b) They both must fall between —1 and +1.

¢) They both have the same sign.

d) They both equal 1 when there is the strongest association.

e) Their squares both have PRE interpretations.

f) They have the same ¢ statistic value for testing Hy: Independence.

£) They both can be strongly affected by severe outliers.

Describe the assumptions (a) in using the regression equation E(Y) = ¢+ X torepresent
the relationship between two variables and (b) in making inferences about that equation
using the least squares prediction equation. Which assumptions are most critical?

Refer to the previous exercise. In view of these assumptions, indicate why such a model
would or would not be good in the following situations.

a) X = time, ¥ = percentage unemployed workers in the United States. (Hinr: Does this
continually tend to increase or decrease?)

b) X = income, ¥ = charitable contributions within the previous year. (Hint: Would
poor people show as much variation as wealthy people?)

¢) X = age, Y = annual medical expenses. (Hint: Suppose expenses tend to be relatively
high for the newborn and for the elderly.)

d) X = per capita income, ¥ = life expectancy, for nations. (Hin#: The increasing trend
eventually levels off.)

For a class of 100 students, the teacher takes the 10 students who perform poorest on the
midterm exam and enrolls them in a special tutoring program. The overall class mean is
70 both on the midterm and final, but the mean for the specially tutored students increases
from 50 to 60. Can we conclude that the tutoring program was successful? Explain.
Refer to Problem 9.24. For these counties, the correlation between high school educa-
tion rate and income equals .79. Suppose we also have data at the individual level as well
as aggregated for a county. Sketch a scatter diagram to show that at the individual level,
the correlation could be much weaker. (Hint: Show that lots of variability could exist
for individuals, yet the summary values for counties could fall close to a straight line.)
Because of this result, it is misleading to extend results from the aggregate level to indi-
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viduals. Making predictions about individuals based on the behavior of aggregate groups
is known as the ecological fallacy (See W. S. Robinson, American Sociological Review,
Vol. 15, 1950, p. 351).

42. Explain why the correlation between X = number of years of edncation and ¥ = annual
income is likely to be smaller if we use a random sample of adults who have a college
degree than if we use a random sample of all adults.

43. Explain carefully the interpretations of the standard deviations (a) sy, (b) sx, (c) o,
(d) 6.
44, *A report sunmarizing the results of a study on the relationship between scores for stu-
dents on a verbal aptitude test X and a mathematics aptitude test ¥ states that X =480,
Y =500, sx = 80, sy = 120, and r = .60.
a) Using the formulas for the correlation and for the least squares estimates, find the pre- i
diction equation. i
b) Find the prediction equation for predicting verbal test result using math test result. :

45. *Qbservations on both X and Y are standardized, having estimated means of 0 and stand-
ard deviations of 1 (see Section 4.2). Show that the prediction equation has the form
Y =rX, where r is the samplé correlation between X and Y that is, for the standardized
variables, the Y—mtercept equals 0 and the slope is the same as the correlation.

46. *A confidence interval for a population correlation p requires a mathematical transfor-
mation of r for which the sampling distribution is approximately normal. This transfor-
mation 1§ T(r) = (1/2)log[(1 + r)/(1 — r)], where log denotes the natural (base-¢)
logarithm. The transformation of the population value p is denoted by 7 (p). The vari-
able T(r) is approximately normally distributed about T (p) with standard etror o7 =
1/+/n = 3. A confidence interval for T (p) is T(r) £ zor. Once we get the endpoints
of the interval for T (p), we substitute each endpoint for T in the inverse transformation
p = (&7 — 1)/(e®T + 1), where e denotes the exponential function (the inverse of the
natural log function). These two values form the endpoints of the confidence interval for b
P |L‘
a) For the correlation of .899 for housing price and size in Table 9.4, show that T(r) = i
1.47. Show that the standard error of T(r) is .1054. :
b) Show that a 95% confidence interval for T (p) is (1.26, 1.67).
¢) Show that the corresponding confidence interval for p is (.85, .93). (Unless r = 0,
the confidence interval for p is not symmetric about the point estimate r, because of the
nonsymmetry of the sampling distribution of r.) 48
d) A confidence interval for the population value p? of the coefficient of determination
follows directly by squaring the limits of the confidence interval for p. Find and interpret
this confidence interval.
e) If the confidence interval for p includes 0, explain why the lower endpoint of the confi-
dence interval for p? is also 0, and the upper endpoint is the larger of the squared endpoints

of the confidence interval for p. ‘

47. *Refer to the previous exercise and to Problem 9.16. Find and interpret 95% confidence
intervals for the population Pearson correlation and the population coefficient of determi- N
nation. ]

48. *Refer to Problem 9.46. Let p; and p, denote the population correlation values between o
two variables for two separate populations. Let ry and r; denote sample values for inde- G
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pendent random samples from the populations. To test the null hypothesis Hy: p1 = pg,
the test statistic is
L,-T

arn,-T,
where Ty and T; are the transformed values of r; and r and

_ [
BT = n—3 n—3

If Hy is true, this test statistic has approximately the standard normal distribution. In Table
9.4, the correlation between housing price and size of home is r; = .932 for the 28 new
homes and r» == .915 for the 65 older homes. Find the P-value for testing Ho: o1 = ;2
against H,: p; # p». Interpret.

*Show that substituting X = X into the prediction equation Y = a + bX yields the
predicted Y-value of Y = Y. (Hint: The least squares formula for the Y-intercept is
a = ¥ — bX.) Show that this means that the least squares prediction equation passes
through the point with coordinates (X, Y), the center of gravity of the data.

. *Alternative formulas for defining the Pearson correlation use the data in formulas similar

to the one for b:
X-X)Y-Y 1 X-X\({y-v
e ()5
=12 =2 - X ¥
ﬂzu—n”zu—n]
Roughly, the correlation is the average cross-product of the z-score for X times the z-
score for Y. Using this formula, explain why (a) the correlation has the same value when

X predicts Y as when Y predicts X, (b) the correlation does not depend on the units of
measurement. (Note: For the population, the correlation is often defined as

Covariance of X and ¥
(Standard deviation of X)(Standard deviation of Y)

where the covariance between X and Y is the average of the cross-products (X — py)
(Y — wy) about the population means.) '

*The values of Y are multiplied by a constant c. From their formulas, show that the stand-
ard deviation sy and the least squares slope b are also then multiplied by ¢. Thus, show
that r = bsy /sy remains the same, so that r does not depend on the units of measurement.
*Suppose that the linear regression equation E(Y) = o 48X with normality and constant
standard deviation o is truly appropriate for the relationship between Y and X. Then, the

interval of numbers
— 1 X — X2
YEto 14—+ —(——):-—
no YAX - X)?
predicts where a new observation on Y will fall at that value of X. This interval is called a

prediction interval for Y. To make an inference about the mean of Y (rather than a single
value of Y) at that value of X, one can use the confidence interval

. X —X)
Y +t6 —1~+—(—-—}~L
no Y (X—-X)
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The ¢-value in these intervals is based on df = n — 2. Most software has options for cal-
culating these formulas (e.g., the options CLI and CLM in PROC REG in SAS). Refer to
the housing data in Table 9.4, at house size X = 2.0,
a) Show that ¥ = 126.0 and a 95% prediction interval is (87.0, 165.0).
b) Show that a 95% confidence interval for the mean selling price is (121.2, 130.8).
c) Explain intuitively why a prediction interval for a single observation is much wider
than a confidence interval for the mean.
d) Results using these formulas are typically overly optimistic, because the model as-
sumptions never hold exactly. Explain how prediction intervals would likely be in error
if, in fact, the variability in housing prices tends to increase as house size increases.
53. *Refer to Problem 9.16 and the previous exercise.
a) Construct a 95% confidence interval for the mean number of children for mothers hav-
ing X = 16,
b) Explain why the prediction interval is probably inappropriate. (Hint: Is ¥ approxi-
mately normal?)
54. *Refer to Example 9.8 on regression toward the mean. Does this imply that, over time,
variation in height is decreasing until, eventually, everyone has the same height? Explain.
55. *To implement least squares, one can find the formulas for the a and b estimates that min-
imize SSE = $(Y — ¥)2 = Y"[¥ — (a + bX)]? using calculus, by taking the derivative
of this function with respect to a, taking the derivative with respect to b, setting the two
derivatives equal to 0, and solving the two linear equations simultaneously for a and b.
Take the derivative with respect to a and solve for a, showing thata = ¥ — bX.
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